首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, potassium hydroxide catalyst supported on palm shell activated carbon was developed for transesterification of palm oil. The Central Composite Design (CCD) of the Response Surface Methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst loading and methanol to oil molar ratio on the production of biodiesel using activated carbon supported catalyst. The highest yield was obtained at 64.1 °C reaction temperature, 30.3 wt.% catalyst loading and 24:1 methanol to oil molar ratio. The physical and chemical properties of the produced biodiesel met the standard specifications. This study proves that activated carbon supported potassium hydroxide is an effective catalyst for transesterification of palm oil.  相似文献   

2.
In this study, sulphuric acid (H2SO4) was used in the pretreatment of sludge palm oil for biodiesel production by an esterification process, followed by the basic catalyzed transesterification process. The purpose of the pretreatment process was to reduce the free fatty acids (FFA) content from high content FFA (> 23%) of sludge palm oil (SPO) to a minimum level for biodiesel production (> 2%). An acid catalyzed esterification process was carried out to evaluate the low content of FFA in the treated SPO with the effects of other parameters such as molar ratio of methanol to SPO (6:1-14:1), temperature (40-80 °C), reaction time (30-120 min) and stirrer speed (200-800 rpm). The results showed that the FFA of SPO was reduced from 23.2% to less than 2% FFA using 0.75% wt/wt of sulphuric acid with the molar ratio of methanol to oil of 8:1 for 60 min reaction time at 60 °C. The results on the transesterification with esterified SPO showed that the yield (ester) of biodiesel was 83.72% with the process conditions of molar ratio of methanol to SPO 10:1, reaction temperature 60 °C, reaction time 60 min, stirrer speed 400 rpm and KOH 1% (wt/wt). The biodiesel produced from the SPO was favorable as compared to the EN 14214 and ASTM D 6751 standard.  相似文献   

3.
The purpose of the work to study biodiesel production by transesterification of Jatropha oil with methanol in a heterogeneous system, using alumina loaded with potassium nitrate as a solid base catalyst. Followed by calcination, the dependence of the conversion of Jatropha oil on the reaction variables such as the catalyst loading, the molar ratio of methanol to oil, reaction temperature, agitation speed and the reaction time was studied. The conversion was over 84% under the conditions of 70 °C, methanol/oil mole ratio of 12:1, reaction time 6 h, agitation speed 600 rpm and catalyst amount (catalyst/oil) of 6% (w). Kinetic study of reaction was also done.  相似文献   

4.
José Maçaira 《Fuel》2011,90(6):2280-2288
Fatty acid methyl esters (biodiesel) were produced by the transesterification of triglycerides with compressed methanol (critical point at 240 °C and 81 bar) in the presence of solid acids as heterogeneous catalyst (SAC-13). Addition of a co-solvent, supercritical carbon dioxide (critical point at 31 °C and 73 bar), increased the rate of the supercritical alcohols transesterification, making it possible to obtain high biodiesel yields at mild temperature conditions. Experiments were carried out in a fixed bed reactor, and reactions were studied at 150-205 °C, mass flow rate 6-24 ml/min at a pressure of 250 bar. The molar ratio of methanol to oil, and catalyst amount were kept constant (9 g). The reaction temperature and space time were investigated to determine the best way for producing biodiesel. The results obtained show that the observed reaction rate is 20 time faster than conventional biodiesel production processes. The temperature of 200 °C with a reaction time of 2 min were found to be optimal for the maximum (88%) conversion to methyl ester and the free glycerol content was found below the specification limits.  相似文献   

5.
In this study, the catalytic activity of dolomite was evaluated for the transesterification of canola oil with methanol to biodiesel in a heterogeneous system. The influence of the calcination temperature of the catalyst and the reaction variables such as the temperature, catalyst amount, methanol/canola oil molar ratio, and time in biodiesel production were investigated. The maximum activity was obtained with the catalyst calcined at 850 °C. When the reaction was carried out at reflux of methanol, with a 6:1 molar ratio of methanol to canola oil and a catalyst amount of 3 wt.% the highest FAME yield of 91.78% was obtained after 3 h of reaction time.  相似文献   

6.
This paper examined the use of calcined sodium silicate as a novel solid base catalyst in the transesterification of soybean oil with methanol. The calcined sodium silicate was characterized by DTA-TG, Hammett indicator method, XRD, SEM, BET, IR and FT-IR. It catalyzed the transesterification of soybean oil to biodiesel with a yield of almost 100% under the following conditions: sodium silicate of 3.0 wt.%, a molar ratio of methanol/oil of 7.5:1, reaction time of 60 min, reaction temperature of 60 °C, and stirring rate of 250 rpm. The oil containing 4.0 wt.% water or 2.5 wt.% FFA could also be transesterified by using this catalyst. The catalyst can be reused for at least 5 cycles without loss of activity.  相似文献   

7.
Biodiesel is gaining more and more importance as an attractive fuel due to the depleting fossil fuel resources. Chemically biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst to give the corresponding monoalkyl esters. This article reports experimental data on the production of fatty acid methyl esters from vegetable oils, soybean and cottonseed oils using sodium hydroxide as alkaline catalyst. The variables affecting the yield and characteristics of the biodiesel produced from these vegetable oils were studied. The variables investigated were reaction time (1-3 h), catalyst concentration (0.5-1.5 w/wt%), and oil-to-methanol molar ratio (1:3-1:9). From the obtained results, the best yield percentage was obtained using a methanol/oil molar ratio of 6:1, sodium hydroxide as catalyst (1%) and 60 ± 1 °C temperature for 1 h. The yield of the fatty acid methyl ester (FAME) was determined according to HPLC. The composition of the FAME was determined according to gas chromatography. The biodiesel samples were physicochemically characterized. From the results it was clear that the produced biodiesel fuel was within the recommended standards of biodiesel fuel.  相似文献   

8.
生物柴油的制备   总被引:35,自引:0,他引:35  
通过正交试验得出了菜籽油在NaOH作用下与甲醇经转酯反应合成生物柴油的最适宜工艺条件:摩尔比6:1、反应温度40℃、反应时间1h、催化剂用量1%。考察了工业甲醇、搅拌速度等工艺条件对反应的影响,对脂肪酶催化反应进行了探索性研究。采用气相色谱(氢火焰)内标法分析产品中脂肪酸甲酯的含量,研究了生物柴油与O#柴油的调和油性质。结果表明,合成的生物柴油其各项性能指标基本达到国外同类产品的标准,与O#柴油调和后低温流动性得到明显改善。  相似文献   

9.
Esters from vegetable oils have attracted a great deal of interest as substitutes for petrodiesel to reduce dependence on imported petroleum and provide a fuel with more benign environmental properties. In this work biodiesel was prepared from cottonseed oil by transesterification with methanol, using sodium hydroxide, potassium hydroxide, sodium methoxide and potassium methoxide as catalysts. A series of experiments were conducted in order to evaluate the effects of reaction variables such as methanol/oil molar ratio (3:1–15:1), catalyst concentration (0.25–1.50%), temperature (25–65 °C), and stirring intensity (180–600 rpm) to achieve the maximum yield and quality. The optimized variables of 6:1 methanol/oil molar ratio (mol/mol), 0.75% sodium methoxide concentration (wt.%), 65 °C reaction temperature, 600 rpm agitation speed and 90 min reaction time offered the maximum methyl ester yield (96.9%). The obtained fatty acid methyl esters (FAME) were analyzed by gas chromatography (GC) and 1H NMR spectroscopy. The fuel properties of cottonseed oil methyl esters (COME), cetane number, kinematic viscosity, oxidative stability, lubricity, cloud point, pour point, cold filter plugging point, flash point, ash content, sulfur content, acid value, copper strip corrosion value, density, higher heating value, methanol content, free and bound glycerol were determined and are discussed in the light of biodiesel standards such as ASTM D6751 and EN 14214.  相似文献   

10.
This study examined the effect of a heterogeneous base catalyst on the transesterification of soybean oil assisted by microwave irradiation. The results showed that nanopowder calcium oxide (nano CaO) was very efficient in converting soybean oil to biodiesel, and microwave irradiation is more efficient than the conventional bath for biodiesel production. However, the water content of methanol can not improve the conversion rate catalyzed by nano CaO.The suitable reaction conditions that can reach a 96.6% of conversion rate were methanol/oil molar ratio, 7:1; amount of catalyst used, 3.0 wt.%; reaction temperature, 338 K; and reaction time, 60 min. The biodiesel produced is within the limits prescribed by the standard of EN-14214.  相似文献   

11.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

12.
The conventional biodiesel production method requires oil extraction followed by transesterification with methanol. The solubility of vegetable oils in methanol is low which decreases the overall rate of reaction. To eliminate the oil extraction step and improve the overall reaction rate, simultaneous extraction, esterification and transesterification were conducted by directly mixing methanol and tetrahydrofuran (THF) co-solvent and sulfuric acid catalyst with ground, desiccated coconut meat (copra) in a batch process and continuing the reaction until the system reached steady state. After separation of the mixture, yield was obtained by measuring the content of triglycerides, diglycerides and monoglycerides in the biodiesel phase. The yield increases with THF:methanol ratio, methanol:oil molar ratio and temperature. Within the range of conditions tested, the highest yield achieved was 96.7% at 60 °C, THF:methanol volume ratio of 0.4 and methanol:oil molar ratio of 60:1. The methanol:oil molar ratio is necessarily high in order to completely wet the copra mass, but is still lower than in previous studies by other researchers on in situ transesterification. Product assays show that the resulting biodiesel product is similar to conventionally produced coconut biodiesel. The results indicate that the in situ transesterification of copra using methanol/THF mixtures merits further study.  相似文献   

13.
G. Kafuku 《Fuel》2010,89(9):2556-2560
Production of biodiesel from non-edible feedstocks is attracting more attention than in the past, for the purpose of manufacturing alternative fuels without interfering with the food chain. Biodiesel was produced using Croton megalocarpus oil as a non-edible feedstock. C. megalocarpus oil was obtained from north Tanzania. This study aimed at optimizing the biodiesel production process parameters experimentally. The parameters involved in the optimization process were the amount of the catalyst, of alcohol, temperature, agitation speed and reaction time. The optimum biodiesel conversion efficiency obtained was 88% at the optimal conditions of 1.0 wt.% amount of potassium hydroxide catalyst, 30 wt.% amount of methanol, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. The properties of croton biodiesel which were determined fell within the recommended biodiesel standards. Croton oil was found with a free fatty acid content of 1.68% which is below the 2% recommended for the application of the one step alkaline transesterification method. The most remarkable feature of croton biodiesel is its cold flow properties. This biodiesel yielded a cloud and pour point of −4 °C and −9 °C, respectively, while its kinematic viscosity lay within the recommended standard value. This points to the viability of using croton biodiesel in cold regions.  相似文献   

14.
In this study, biodiesel was produced from Moringa oleifera oil using sulfated tin oxide enhanced with SiO2 (SO42/SnO2-SiO2) as super acid solid catalyst. The experimental design was done using design of experiment (DoE), specifically, response surface methodology based on three-variable central composite design (CCD) with alpha (α) = 2. The reaction parameters studied were reaction temperature (60 °C to 180 °C), reaction period (1 h to 3 h) and methanol to oil ratio (1:6 to 1:24). It was observed that the yield up to 84 wt.% of Moringa oleifera methyl esters can be obtained with reaction conditions of 150 °C temperature, 150 min reaction time and 1:19.5 methanol to oil ratio, while catalyst concentration and agitation speed are kept at 3 wt.% and 350-360 rpm respectively. Therefore this study presents the possibility of converting a relatively new oil feedstock, Moringa oleifera oil to biodiesel and thus reducing the world's dependency on existing edible oil as biodiesel feedstock.  相似文献   

15.
The production of biodiesel fuel from crude roselle oil was evaluated in this study. The process of alkali-catalyzed transesterification with methanol was carried out to examine the effects of reaction variables on the formation of methyl ester: variables which included methanol-to-oil molar ratios of 4:1-10:1, catalyst concentrations of 0.25-2.0% w/w of oil, reaction temperatures of 32-60 °C, and reaction times of 5-80 min. The methyl ester content from each reaction condition was analyzed by gas chromatography (GC), the optimum condition having been achieved at a methanol-to-oil molar ratio of 8:1, a catalyst concentration of 1.5% w/w of oil, a reaction temperature of 60 °C, and a reaction time of 60 min. The resultant methyl ester content of 99.4% w/w, plus all of the other measured properties of the roselle biodiesel, met the Thai biodiesel (B100) specifications and international standards EN 14214:2008 (E) and ASTM D 6751-07b, with the exception of a higher carbon residue and lower oxidation stability.  相似文献   

16.
This work studies the application of KNO3/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO3 impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions.The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO3, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst.The biodiesel with the best properties was obtained using an amount of KNO3 of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 °C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels.  相似文献   

17.
固体碱法制备生物柴油及其性能   总被引:72,自引:2,他引:72       下载免费PDF全文
用共沉淀法制备了水滑石,焙烧后得到Mg-Al复合氧化物,以此为催化剂进行菜籽油的酯交换反应,正交实验表明该酯交换反应的小试最佳工艺条件为: 反应温度65 ℃、醇油摩尔比6∶1、反应时间为3 h,催化剂加入量为菜籽油质量的2%,脂肪酸甲酯(生物柴油)含量为95.7%.得到的生物柴油低温流动性能好,闪点高达170 ℃,氧化安定性好,主要性能指标符合0#柴油标准,可以和0#柴油以任何比例调和.  相似文献   

18.
Biodiesel has been synthesized from karanja, mahua and hybrid {karanja and mahua (50:50 v/v)} feedstocks. A high yield in the range of 95-97% was obtained with all the three feedstocks. Conversion of vegetable oil to fatty acid methyl esters was found to be 98.6%, 95.71% and 94% for karanja, mahua and hybrid feedstocks respectively. The optimized reaction parameters were found to be 6:1 (methanol to oil) molar ratio, H2SO4 (1.5% v/v), at 55 ± 0.5 °C for 1 h during acid esterification for the three feedstocks. During alkaline transesterification, a molar ratio of 8:1 (methanol to oil), 0.8 wt.% KOH (wt/wt) at 55 ± 0.5 °C for 1 h was found to be optimum to achieve high yield for karanja oil. For mahua oil and the hybrid feedstock, 6:1 (methanol to oil) molar ratio, 0.75 (w/w) KOH at 55 ± 0.5 °C for 1 h was optimum for alkaline transesterification to obtain a high yield. High yield and conversion from hybrid feedstock during transesterification reaction was an indication that the reaction was not selective for any particular oil. 1H NMR has been used for the determination of conversion of the feedstock to biodiesel.  相似文献   

19.
In this study, transesterification of soybean oil to biodiesel using CaO as a solid base catalyst was studied. The reaction mechanism was proposed and the separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and water content were investigated. The experimental results showed that a 12:1 molar ratio of methanol to oil, addition of 8% CaO catalyst, 65 °C reaction temperature and 2.03% water content in methanol gave the best results, and the biodiesel yield exceeded 95% at 3 h. The catalyst lifetime was longer than that of calcined K2CO3/γ-Al2O3 and KF/γ-Al2O3 catalysts. CaO maintained sustained activity even after being repeatedly used for 20 cycles and the biodiesel yield at 1.5 h was not affected much in the repeated experiments.  相似文献   

20.
亚临界甲醇中麻疯树油制备生物柴油的研究   总被引:1,自引:0,他引:1  
甘孟瑜  陈琦  潘登  韦莎 《广州化工》2010,38(3):70-72,99
对麻疯树油在催化剂对甲苯磺酸作用下与亚临界甲醇反应制备脂肪酸甲酯(生物柴油)进行了研究。结果表明在反应温度170℃、醇油摩尔比40:1、催化剂用量占油重的0.75%和反应时间30 m in的条件下,反应产物中脂肪酸甲酯含量可达93%以上。制备的生物柴油,各项指标与柴油相似。主要性能指标,符合ASTMPS121-99(USA)和0#矿物柴油标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号