首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multistage recursive block interleaver (MIL) is proposed for the turbo code internal interleaver. Unlike conventional block interleavers, the MIL repeats permutations of rows and columns in a recursive manner until reaching the final interleaving length. The bit error rate (BER) and frame error rate (FER) performance with turbo coding and MIL under frequency-selective Rayleigh fading are evaluated by computer simulation for direct-sequence code-division multiple-access mobile radio. The performance of rate-1/3 turbo codes with MIL is compared with pseudorandom and S-random interleavers assuming a spreading chip rate of 4.096 Mcps and an information bit rate of 32 kbps. When the interleaving length is 3068 bits, turbo coding with MIL outperforms the pseudorandom interleaver by 0.4 dB at an average BER of 10-6 on a fading channel using the ITU-R defined Vehicular-B power-delay profile with the maximum Doppler frequency of fD = 80 Hz. The results also show that turbo coding with MIL provides superior performance to convolutional and Reed-Solomon concatenated coding; the gain over concatenated coding is as much as 0.6 dB  相似文献   

2.
This paper presents some trellis codes that provide high coding gain to channels with slow, non frequency-selective Rayleigh fading. It is shown that the use of two encoders in parallel-used to specify the in-phase and quadrature components of the transmitted signal-results in greater minimum time diversity than the conventional design in which a single encoder is used. Using this approach-which we label “I-Q TCM”-codes with bandwidth efficiencies of 1, 2, and 3 bits/s/Hz are described for various constraint lengths. The performance of these codes is bounded analytically and approximated via simulation; the results show a large improvement in the bit error rate (BER) when compared with conventional trellis-coded modulation (TCM) schemes when perfect channel state information (CSI) is available to the receiver. Indeed, when this approach is applied to channels with independent Rayleigh fading, the resulting coding gain is close to that implied by the cutoff rate limit, even for only moderately complex systems. The proposed codes are also simulated under less ideal assumptions. For instance, results for a 1-bit/s/Hz IQ-TCM code without CSI show a significant gain over conventional coding. Finally, simulations over channels with correlated fading were undertaken; it is concluded that an interleaver span of 4ν yields performance close to what is achieved with ideal interleaving  相似文献   

3.
The performance of M-ary differential phase shift keying (MDPSK) on frequency-selective slow Rayleigh fading, lognormal shadowed channels with diversity combining is analyzed for mobile and portable applications. The use of L-branch equal gain postdetection microdiversity combining to mitigate the effects of fading and P-port macrodiversity to alleviate the effects of shadowing are investigated. Four performance criteria are considered for a frequency-selective multipath fading, intersymbol interference channel. These are, the short term bit error rate (BER), the irreducible BER, the complementary distribution over the lognormal shadowing of the average BER, and the probability that the instantaneous BER exceeds a threshold value, averaged over a spatial environment. Closed-form expressions for the four performance criteria are obtained. The BER and outage performance results show that diversity combining is an effective method for improving the system performance (and hence system reliability), when the normalized delay spread is not large. It is also seen that, in most cases, 4DPSK gives the best performance followed by 8DPSK and 2DPSK, respectively, for a given information throughput  相似文献   

4.
The capacity of a code-division multiple-access (CDMA) system is a function of the bit error rate (BER) performance of individual users. Therefore, it is important to optimize the individual links before proceeding to system level analysis. This is particularly true for operating in a fading channel where the performance without diversity reception is rather poor. This paper compares the BER performance of differential detection and pilot symbol-assisted coherent detection of a direct-sequence (DS) spread-spectrum (SS) signal on a frequency-selective Rayleigh fading channel using RAKE reception. Both equal gain and maximal ratio combining are considered, and the effect of convolutional coding with interleaving is studied. It is shown that in the particular cases considered in this paper, rate 1/8 convolutionally encoded pilot symbol-assisted BPSK performs better than coded differential detection, thus providing a higher system capacity  相似文献   

5.
In this paper the impact of the imperfect reference signal extraction is investigated, the bit error rate (BER) performance of multibranch selection combining (SC) receiver for binary and quaternary phase-shift keying (BPSK and QPSK) signals in a generalized α-μ fading channel are shown. The combined effects of imperfect phase estimation of the received signal, diversity order, fading severity and average signal-to-noise ratio (SNR) per bit on BER values are examined. The analytical results are verified by Monte Carlo simulations.  相似文献   

6.
This paper studies the effects of time-delay spread on trellis-coded modulation (TCM) in portable radio channels, where equalization is not employed to mitigate frequency-selective fading. The average irreducible bit error rate (BER) of three different TCM schemes are analytically formulated first and then numerically evaluated by simulation. The results for a delay spread lower than 0.2 of the symbol period indicate that the performance of TCM schemes with interleaving/deinterleaving is much better than that of QPSK, and better TCM schemes for flat fading also give better performance under low delay spread. Analytical results indicate that a good TCM scheme in frequency-selective fading channels should have both a large Euclidean distance and a high degree of built-in time diversity. If higher time-delay spread is encountered, TCM does not have advantages over QPSK. We also compare TCM performance with and without diversity. It is found that diversity greatly improves the performance under low delay spread, while the diversity gain quickly diminishes as the RMS delay spread approaches 0.2 of the symbol period  相似文献   

7.
分析了最大比合并(MRC)二维Rake(2D-Rake)接收机,在相关频率选择性Nakagarnl衰落环境中的平均误比特率(BER)特性。推导了在任意衰落环境中,存在多个共信道干扰的多天线多Rake抽头接收机的信干噪比(SINR)和BER的闭式表达式。文中还进一步说明了角度扩展、天线间隔、空间和时间分集阶数、平均到达角度、平均路径强度以及衰落程度对2D-Rake接收机BER性能的影响.  相似文献   

8.
In this paper, we investigate a multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (the TAS/MRC scheme). In this scheme, a single transmit antenna, which maximizes the total received signal power at the receiver, is selected for uncoded transmission. The closed-form outage probability of the system with transmit antenna selection is presented. The bit error rate (BER) of the TAS/MRC scheme is derived for binary phase-shift keying (BPSK) in flat Rayleigh fading channels. The BER analysis demonstrates that the TAS/MRC scheme can achieve a full diversity order at high signal-to-noise ratios (SNRs), as if all the transmit antennas were used. The average SNR gain of the TAS/MRC is quantified and compared with those of uncoded receiver MRC and space-time block codes (STBCs). The analytical results are verified by simulation. It is shown that the TAS/MRC scheme outperforms some more complex space-time codes of the same spectral efficiency. The cost of the improved performance is a low-rate feedback channel. We also show that channel estimation errors based on pilot symbols have no impact on the diversity order over quasi-static fading channels.  相似文献   

9.
The performance of a turbo-coded code division multiaccess system with a minimum mean-square error (MMSE) receiver for interference suppression is analyzed on a Rayleigh fading channel. In order to accurately estimate the performance of the turbo coding, two improvements are proposed on the conventional union bounds: the information of the minimum distance of a particular turbo interleaver is used to modify the average weight spectra, and the tangential bound is extended to the Rayleigh fading channel. Theoretical results are derived based on the optimum tap weights of the MMSE receiver and maximum-likelihood decoding. Simulation results incorporating iterative decoding, RLS adaptation, and the effects of finite interleaving are also presented. The results show that in the majority of the scenarios that we are concerned with, the MMSE receiver with a rate-1/2 turbo code will outperform a rate-1/4 turbo code. They also show that, for a bit error rate lower than 10-3, the capacity of the system is increased by using turbo codes over convolutional codes, even with small block sizes  相似文献   

10.
Chip interleaving (CI) is a unique technique to exploit time diversity in direct sequence spread spectrum (DS/SS)‐based systems operating in fading environments. In order to facilitate design of CI systems in various fading situations, we present a performance analysis for CI DS/SS system over Rician multipath time‐varying fading channels. We derive the analytical bit error rate (BER) expression for CI DS/SS to allow fast and accurate evaluation of BER performance based on the interleaving depth selected, spreading codes employed, and the time correlation function of the channel. We then discuss some ideal cases by using the analytical results to reveal some of the insights presented in the performance analysis. For the purpose of comparison, we also obtain the BER expression for conventional DS/SS system as a special case of CI system with an interleaving depth of one. Using numerical examples, we verify the analytical results with computer simulations and illustrate the BER performance behavior of CI DS/SS system with varying interleaving depth for all possible combinations of two sets of spreading codes of different type and two different time correlation functions of the channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Trellis coded modulation (TCM) is a bandwidth efficient transmission scheme that can achieve high coding gain by integrating coding and modulation. This paper presents an analytical expression for the error event probability of concatenated space-time block coding with TCM which reveals some dominant factors affecting the system performance over slow fading channels when perfect interleavers are used. This leads to establishing the design criteria for constructing the optimal trellis codes of such a concatenated system over slow flat fading channels. Through simulation, significant performance improvement is shown to be obtained by concatenating the interleaved streams of these codes with space-time block codes over fading channels. Simulation results also demonstrate that these trellis codes have better error performance than traditional codes designed for single-antenna Gaussian or fading channels. Performance results over quasi-static fading channels without interleaving are also compared in this paper. Furthermore, it is shown that concatenated space-time block coding with TCM (with/without interleaving) outperforms space-time trellis codes under the same spectral efficiency, trellis complexity, and signal constellation.  相似文献   

12.
The bit error rate (BER) performance and the characteristics of a two-dimensional (2-D) RAKE receiver operating in a correlated frequency-selective Nakagami-fading environment are analyzed. Correlated fading between array elements whose fading statistics are identical across the same RAKE branch, as well as an arbitrary number of RAKE-branches with arbitrary finding statistics, are assumed. We derived an approximated signal-to-noise ratio (SNR) statistics for one RAKE branch with correlated multiple antennas, which is extended to that for multiple RAKE branches with arbitrary fading statistics, i.e., a 2-D RAKE receiver. The receiver's performance and characteristics are analyzed using the cumulative distribution function of the SNR at the 2-D RAKE receiver output and the BER under various conditions, Numerical results show that the improvement In performance of the 2-D RAKE receiver is brought about by the average SNR and diversity gains, which are identified by two parameters specifying the gamma distribution of SNR  相似文献   

13.
The authors introduced an algebraic design framework for space-time coding in flat-fading channels . We extend this framework to design algebraic codes for multiple-input multiple-output (MIMO) frequency-selective fading channels. The proposed codes strive to optimally exploit both the spatial and frequency diversity available in the channel. We consider two design approaches: The first uses space-time coding and maximum likelihood decoding to exploit the multi-path nature of the channel at the expense of increased receiver complexity. Within this time domain framework, we also propose a serially concatenated coding construction which is shown to offer a performance gain with a reasonable complexity iterative receiver in some scenarios. The second approach utilizes the orthogonal frequency division multiplexing technique to transform the MIMO multipath channel into a MIMO flat block fading channel. The algebraic framework is then used to construct space-frequency codes (SFC) that optimally exploit the diversity available in the resulting flat block fading channel. Finally, the two approaches are compared in terms of decoder complexity, maximum achievable diversity advantage, and simulated frame error rate performance in certain representative scenarios.  相似文献   

14.
In this paper, space-frequency-Doppler coded OFDM (SFDO-OFDM) scheme over the time-varying Doppler fading channels via the time-frequency duality is proposed. Based on the basis expansion model (BEM) and the time-frequency duality, through the circulant matrix diagonalized processing, the nonlinear time-varying Doppler fading channel is dually converted to the virtual frequency-selective linear channels. With OFDM module, subgrouping the subcarriers in OFDM through the block matrix method and fatherly general complex orthogonal coding (GCOD) on each corresponding block subcarriers, SFDO-OFDM codes for the general multiple input multiple output (MIMO) is thus constructed. And concatenating it with the signal constellation precoding, full maximum diversity gains including the inherent Doppler fading are achieved. Theoretical analysis and corroborating simulation results demonstrate that, comparing with existing Doppler coding alternatives, the proposed scheme can effectively and robustly combat the Doppler fading with high bandwidth efficiency and even lower bit error ratio (BER).  相似文献   

15.
In this paper, we investigate bit-error-rate (BER) performance of a minimum mean-squared error (MMSE) multiuser receiver for asynchronous band-limited direct- sequence code-division multiple-access (DS-CDMA) systems. We focus on the BER performance in the presence of multitone jamming (MTJ) over frequency-selective multipath fading channels. We consider the generalized-K fading model in our analysis, as it can model a large spectrum of fading-channel characteristics. We also analyze the effects of band- limited pulse shape on the BER performance of the system. Multipath diversity based on the maximal-ratio combining (MRC) scheme is employed to combat fading effects. Our analytical expressions are valid for arbitrary diversity levels and fading parameters. Spectrum raised cosine (SRC) and Beaulieu–Tan–Damen (BTD) pulse shapes are employed for numerical analysis. Numerical results show that in the presence of MTJ and under various channel conditions, the MMSE based receiver gives better BER performance than the one without it. Moreover, the system with BTD pulses outperforms the one with SRC pulses.  相似文献   

16.
By introducing a full‐rate space–time coding (STC) scheme, a synchronous CDMA (code division multiple access) system with full‐rate STC is given, and the corresponding uplink performance is investigated in Rayleigh fading channel with imperfect estimation. Considering that existing STC‐CDMA system has high decoding complexity, low‐complexity multiuser receiver schemes are developed for perfect and imperfect estimations, respectively. The schemes can make full use of the complex orthogonality of STC to reduce the high decoding complexity of the existing scheme, and have linear decoding complexity compared with the existing scheme with exponential decoding complexity. Moreover, the proposed schemes can achieve almost the same performance as the existing scheme. Compared with full‐diversity STC‐CDMA, the given full‐rate STC‐CDMA can achieve full data rate, low complexity, and partial diversity, and form efficient spatial interleaving. Thus, the concatenation of channel coding can effectively compensate for the performance loss due to partial diversity. Simulation results show that the full‐rate STC‐CDMA has lower bit error rate (BER) than full‐diversity STC‐CDMA systems under the same system throughput and concatenation of channel code. Moreover, the system BER with imperfect estimation are worse than that with perfect estimation due to the estimation error, which implies that the developed multiuser receiver schemes are valid and reasonable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The performance of M-ary phase shift keying (MPSK) in the presence of cochannel interference in microcellular radio environments is analyzed. Average bit error rates (BER) of MPSK using both dual-branch equal gain combining (EGG) and dual-branch selection combining (SC) are derived assuming that the desired signal experiences frequency-nonselective Ricean or Nakagami fading and the multiple interferers experience independent frequency-nonselective Rayleigh fading. Nyquist pulses are used, and perfect coherent detection is assumed at the receiver. The accuracy of the Gaussian interference approximation for diversity receivers is also assessed  相似文献   

18.
This paper investigates the performance of M-ary differential phase shift keying orthogonal frequency-division multiplexing (MDPSK-OFDM) systems employing peak power controlling block codes over frequency-selective Rayleigh fading channels. The block codes have a capability of both error correction and reduction of the peak-to-average power ratio (PAPR). To decode the block codes with reasonable complexity, the extended version of the ordered statistic decoding of Fossorier and Lin (see IEEE Trans. Inform. Theory, vol.41, p.1379-96, 1995) is utilized. The bit error rate performance of the block codes is evaluated over typical indoor radio channels by computer simulation and compared with that of the equivalent frequency diversity of the repetition codes. The significant coding gain and improvement of the irreducible error floor are observed under the constraint of the PAPR from 3 to 6 dB  相似文献   

19.
Introduced in 1993, turbo codes can achieve high coding gains close to the Shannon limit. In order to design power and bandwidth‐efficient coding schemes, several approaches have been introduced to combine high coding rate turbo codes with multilevel modulations. The coding systems thus obtained have been shown to display near‐capacity performance over additive white Gaussian noise (AWGN) channels. For communications over fading channels requiring large coding gain and high bandwidth efficiency, it is also interesting to study bit error rate (BER) performance of turbo codes combined with high order rectangular QAM modulations. To this end, we investigate, in this paper, error performance of several bandwidth‐efficient schemes designed using the bit‐interleaved coded modulation approach that has proven potentially very attractive when powerful codes, such as turbo codes, are employed. The structure of these coding schemes, termed ‘bit‐interleaved turbo‐coded modulations’ (BITCMs), is presented in a detailed manner and their BER performance is investigated for spectral efficiencies ranging from 2 to 7 bit/s/Hz. Computer simulation results indicate that BITCMs can achieve near‐capacity performance over Rayleigh fading channels, for all spectral efficiencies considered throughout the paper. It is also shown that the combination of turbo coding and rectangular QAM modulation with Gray mapping constitutes inherently a very powerful association, since coding and modulation functions are both optimized for operation in the same signal‐to‐noise ratio region. This means that no BER improvement is obtainable by employing any other signal constellation in place of the rectangular ones. Finally, the actual influence of the interleaving and mapping functions on error performance of BITCM schemes is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes how block-coded modulation (BCM) and multiple BCM (MBCM) with Viterbi decoding can be designed for use in Rayleigh fading and severe Rician fading channels. New codes are developed by modifying known codes to increase the minimum symbol distance, which is one of the distances that has a strong effect on the bit error rate (BER) performance under fading channels. Combined with anti-fading techniques such as fading compensation, interleaving, and branch weighting, the new codes significantly improve BER performance. Computer simulations were used to confirm the code performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号