首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.  相似文献   

2.
It is established that a SISO linear stabilizable and detectable system subject to output saturation can be semi-globally stabilized by linear output feedback if all its invariant zeros are in the closed left-half plane, no matter where the open loop poles are. This result complements a recent result that such systems can always be globally stabilized by discontinuous nonlinear feedback laws, and can be viewed as dual to a well-known result: a linear stabilizable and detectable system subject to input saturation can be semi-globally stabilized by linear output feedback if all its poles are in the open left-half plane, no matter where the invariant zeros are.  相似文献   

3.
In this paper, we develop optimal output feedback controllers for set‐point regulation of linear non‐negative dynamical systems. Specifically, using a constrained fixed‐structure control framework we develop optimal output feedback control laws that guarantee that the trajectories of the closed‐loop system remain in the non‐negative orthant of the state space for non‐negative initial conditions. In addition, we characterize domains of attraction predicated on closed and open Lyapunov level surfaces contained in the non‐negative orthant for unconstrained optimal linear‐quadratic output feedback controllers. Output feedback controllers for compartmental systems with non‐negative inputs are also given. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
《Automatica》1986,22(4):397-411
This paper presents a method for designing a feedback control law to stabilize a class of uncertain linear systems. The systems under consideration contain uncertain parameters whose values are known only to within a given compact bounding set. Furthermore, these uncertain parameters may be time-varying. The method used to establish asymptotic stability of the closed loop system (obtained when the feedback control is applied) involves the use of a quadratic Lyapunov function. The main contribution of this paper involves the development of a computationally feasible algorithm for the construction of a suitable quadratic Lyapunov function. Once the Lyapunov function has been obtained, it is used to construct the stabilizing feedback control law. The fundamental idea behind the algorithm presented involves constructing an upper bound for the Lyapunov derivative corresponding to the closed loop system. This upper bound is a quadratic form. By using this upper bounding procedure, a suitable Lyapunov function can be found by solving a certain matrix Riccati equation. Another major contribution of this paper is the identification of classes of systems for which the success of the algorithm is both necessary and sufficient for the existence of a suitable quadratic Lyapunov function.  相似文献   

5.
Examples of linear control systems with fast time-varying uncertain coefficients are given, which can be stabilized by a nonlinear memoryless state feedback, but cannot be stabilized by a linear time-invariant dynamic state feedback. By means of one of these examples the authors show that the closed loop quadratic stability margin may be infinitely smaller than the actual stability margin  相似文献   

6.
In this paper, we develop a unified framework to address the problem of optimal nonlinear analysis and feedback control for partial stability and partial‐state stabilization. Partial asymptotic stability of the closed‐loop nonlinear system is guaranteed by means of a Lyapunov function that is positive definite and decrescent with respect to part of the system state, which can clearly be seen to be the solution to the steady‐state form of the Hamilton–Jacobi–Bellman equation and hence guaranteeing both partial stability and optimality. The overall framework provides the foundation for extending optimal linear‐quadratic controller synthesis to nonlinear nonquadratic optimal partial‐state stabilization. Connections to optimal linear and nonlinear regulation for linear and nonlinear time‐varying systems with quadratic and nonlinear nonquadratic cost functionals are also provided. Finally, we also develop optimal feedback controllers for affine nonlinear systems using an inverse optimality framework tailored to the partial‐state stabilization problem and use this result to address polynomial and multilinear forms in the performance criterion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of boundary feedback stabilization of rotating Timoshenko beam, arising from control of flexible robot arms, is studied in this paper. First, under gain adaptive direct strain feedback controls, a counterexample is given to show that the corresponding closed loop system is not asymptotically stable, which is contrary to traditional conjecture. The counterexample given in this paper also exemplifies an interesting result: certain two two-order linear partial differential equations with five homogeneous boundary conditions have non-trivial solutions. Then, with an additional boundary feedback control, the related energy of the closed loop system is proved to be strongly stable, or more precisely, the configuration of the beam can be exponentially stabilized with some suitable non-linear boundary feedback controls with adaptive gain.  相似文献   

8.
This paper investigates the quantized feedback control for nonlinear feedforward systems with unknown output functions and unknown control coefficients. The unknown output function is Lipschitz continuous but may not be derivable, and the unknown control coefficients are assumed to be bounded. To deal with this challenging quantized control problem, a time‐varying low‐gain observer is designed and a delicate time‐varying scaling transformation is introduced, which can avoid using the derivative information of the output function. Then, based on the well‐known backstepping method and the sector bound approach, a time‐varying quantized feedback controller is designed using the quantized output, which can achieve the boundedness of the closed‐loop system states and the convergence of the original system states. Moreover, a guideline is provided for choosing the parameters of the input and output quantizers such that the closed‐loop system is stable. Finally, two simulation examples are given to show the effectiveness of the control scheme.  相似文献   

9.
《Automatica》1987,23(1):33-40
This paper considers the problem of simultaneously stabilizing a finite collection of single input linear systems. This stabilization is achieved using a single non-linear state feedback controller. The stability of the resulting closed loop system is established using a collection of quadratic Lyapunov functions. The main result of this paper is a sufficient condition for simultaneous stabilizability. Furthermore, when this sufficient condition is satisfied, the paper gives a formula for constructing the stabilizing feedback control law. The paper includes an example in which the stabilization procedure is applied to the stabilization of an F4E fighter aircraft.  相似文献   

10.
In this paper, the decentralized adaptive neural network (NN) output‐feedback stabilization problem is investigated for a class of large‐scale stochastic nonlinear strict‐feedback systems, which interact through their outputs. The nonlinear interconnections are assumed to be bounded by some unknown nonlinear functions of the system outputs. In each subsystem, only a NN is employed to compensate for all unknown upper bounding functions, which depend on its own output. Therefore, the controller design for each subsystem only need its own information and is more simplified than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the whole closed‐loop system can be proved to be stable in probability by constructing an overall state‐quartic and parameter‐quadratic Lyapunov function. The simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the problem of choosing a single constant linear state feedback control law which produces satisfactory performance for each of several operating points of a system. The model for each operating point is assumed to be linear and the criterion for satisfactory performance is taken to be an infinite horizon quadratic cost functional. This problem is reformulated as a finite dimensional optimization over the linear feedback gains which can be readily solved using standard nonlinear optimization techniques provided a stabilizing initial value of the gains can be found. Although the direct solution of this problem will be discussed briefly, the major portion of the paper will be devoted to solution techniques when an initial stabilizing guess is not available.  相似文献   

12.
For some switched nonlinear systems, stabilization can be achieved under arbitrary switching with state feedback control. Due to switching zero dynamics, output feedback stabilization for some switched nonlinear systems needs dwell time between switching to guarantee system stability. In this paper, we consider a class of switched nonlinear systems with unknown parameters and unknown switching signals. We design a robust output feedback controller that stabilizes the system under a class of switching signals with average dwell time (ADT) where the value of ADT can be reduced by adjusting the control gain. For some special cases, common quadratic Lyapunov functions of the closed‐loop systems can be found and the value of ADT is further relaxed. Some examples and simulations are provided to validate the results.  相似文献   

13.
In this paper, constructive techniques are developed for a class of stochastic non‐linear systems with delays in input. Non‐linear terms considered in this paper are more general than those satisfying linear growth conditions. The purpose is to design an output feedback controller such that the resulting closed‐loop system is globally asymptotically stable in probability. The desired output feedback controller is explicitly constructed using the Lyapunov method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper proposes the output feedback optimal guaranteed cost controller design method for uncertain piecewise linear systems based on the piecewise quadratic Lyapunov functions technique. By constructing piecewise quadratic Lyapunov functions for the closed‐loop augmented systems, the existence of the guaranteed cost controller for closed‐loop uncertain piecewise linear systems is cast as the feasibility of a set of bilinear matrix inequalities (BMIs). Some of the variables in BMIs are set to be searched by genetic algorithm (GA), then for a given chromosome corresponding to the variables in BMIs, the BMIs turn to be linear matrix inequalities (LMIs), and the corresponding non‐convex optimization problem, which minimizes the upper bound on cost function, reduces to a semidefinite programming (SDP) which is convex and can be solved numerically efficiently with the available software. Thus, the output feedback optimal guaranteed cost controller can be obtained by solving the non‐convex optimization problem using the mixed algorithm that combines GA and SDP. Numerical examples show the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The problem of quadratic stabilization for a class of nonlinear systems is examined in this paper. By employing a well-known Riccati approach, we develop a technique for designing a state feedback control law which quadratically stabilizes the system for all admissible uncertainties. This state feedback control law consists of linear and nonlinear feedback control terms. The linear feedback control term is generalized from a well-known H result, while the nonlinear term can be viewed as a correcting term for the presence of nonlinear bounded uncertainty. This stabilization result is extended to static output feedback and to systems for which the nonlinear uncertainty satisfies generalized matching conditions. Furthermore, we point out that in the presence of nonlinear uncertainty the global quadratic stability may be destroyed by some arbitrary small mismatched uncertainty in the matrix, and proceed to establish the region of semi-global quadratic stability of the controlled system. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
This paper focuses on the design of non‐linear parametric controllers, around a nominal input/output trajectory of a discrete‐time non‐linear system. The main result provided herein is a relationship between the tracking performance of the closed‐loop control system in the neighbourhood of a nominal trajectory, and some local features (the first‐order linear approximations about the nominal trajectory) of the non‐linear mappings which characterize the plant and the feedback controller. Such a result can be used to predict the dynamic behaviour of the control system, and to reduce the computational complexity of the optimization task associated with the tuning of the parametric feedback controller. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This note is concerned with the problem of stabilizing an uncertain linear system via state feedback control. An uncertain system which admits a stabilizing state feedback control and some associated quadratic Lyapunov function is said to be quadratically stabilizable. In a number of recent papers, conditions are given under which quadratic stabilizability via nonlinear control implies quadratic stabilizability via linear control. These papers restrict the manner in which the uncertain parameters are permitted to enter structurally into the state equation in order to establish this result. This note presents an example which shows that this implication is not true for more general uncertain linear systems. To this end, we describe an uncertain linear system which is quadratically stabilizable via nonlinear control but not quadratically stabilizable via linear control.  相似文献   

18.
In recent years, nonlinear model predictive control (NMPC) schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in the framework of nonlinear predictive control. This paper combines stabilizing instantaneous state feedback NMPC schemes with high-gain observers to achieve output feedback stabilization. For a uniformly observable MIMO system class it is shown that the resulting closed loop is asymptotically stable. Furthermore, the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme can be recovered to any degree of accuracy for large enough observer gains, thus leading to semi-regional results. Additionally, it is shown that the output feedback controller is robust with respect to static sector bounded nonlinear input uncertainties.  相似文献   

19.
具有参数不确定性的非线性系统的鲁棒输出跟踪   总被引:4,自引:0,他引:4  
研究具有非线性参数化的非线性系统的输出跟踪问题.采用时变状态反馈控制律, 指数镇定输出跟踪误差,并保证非线性系统的所有状态是有界的.为了实现时变状态反馈控 制律,设计高增益鲁棒观测器观测构造该控制律所需要的状态,使得整个闭环系统的输出能 渐近跟踪期望输出,且该闭环系统中所有信号都是有界的.  相似文献   

20.
In this paper, the dynamic self‐triggered output‐feedback control problem is investigated for a class of nonlinear stochastic systems with time delays. To reduce the network resource consumption, the dynamic event‐triggered mechanism is implemented in the sensor‐to‐controller channel. Criteria are first established for the closed‐loop system to be stochastically input‐to‐state stable under the event‐triggered mechanism. Furthermore, sufficient conditions are given under which the closed‐loop system with dynamic event‐triggered mechanism is almost surely stable, and the output‐feedback controller as well as the dynamic event‐triggered mechanism are co‐designed. Moreover, a dynamic self‐triggered mechanism is proposed such that the nonlinear stochastic system with the designed output‐feedback controller is stochastically input‐to‐state stable and the Zeno phenomenon is excluded. Finally, a numerical example is provided to illustrate the effectiveness of proposed dynamic self‐triggered output‐feedback control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号