首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
随着射频功放非线性对射频前端的影响日益增大;使得功放建模变得越来越重要。提出了一种自适应模糊小波神经网络模型结构;并利用改进的粒子群优化算法;建立有记忆的功放模型。将小波函数融入到自适应模糊推理系统的模糊规则中;得到新的网络模型;在粒子群算法中引入最差位置影响因子;提高搜索效率;并进一步简化;忽略粒子的速度项;同时采用与适应度函数值相关的动态变化惯性权重;加快了收敛速度;避免出现“早熟”现象。仿真结果表明:该方法建立的功放模型误差小、精度高;能够有效地表征功放特性。  相似文献   

2.
自适应扩展的简化粒子群优化算法   总被引:1,自引:0,他引:1  
针对基本粒子群优化算法易于陷入局部最优的问题,提出了一种自适应扩展的简化粒子群优化算法。该算法采用去除速度项的简化算法结构,并用所有粒子个体极值的平均值代替每个粒子的个体极值,自适应动态调整加速系数。实验结果表明,算法能够有效避免早熟收敛问题,其全局收敛性能显著提高,收敛速度更快。  相似文献   

3.
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。  相似文献   

4.
根据粒子群算法求解多目标问题的特点,个体极值和全局极值的选择不同会对实验结果产生很大影响。目前普遍的选择方法仅仅根据简单的支配关系,但是会存在两个解之间没有支配关系而导致不去更新个体最优值(PB)和全局最优值(GB),这样会导致更好的个体极值和全局极值的遗漏从而降低收敛时间。文中提出一种新的个体极值和全局极值的选择策略。使用这种策略,可以加快收敛,提高准确性,防止非劣解的遗漏。通过几个测试函数的实验仿真,所得解集的分步性和多样性都有显著的提高。  相似文献   

5.
一种自适应扩展粒子群优化算法   总被引:9,自引:1,他引:9  
在粒子群优化算法的基础上,首先把粒子群优化算法的速度更新式中的个体最优位置用粒子群中所有个体最优位置的平均值代替,得到扩展粒子群优化算法;然后,建立了加速系数和粒子群中所有粒子的平均适应度与整体最优位置适应度之差的一种非线性函数关系,得到自适应加速系数扩展粒子群优化算法。由于新的算法利用了所有个体最优粒子的信息,并在进化过程中通过建立的非线性时变加速系数自适应地调整“认知”部分和“社会”部分对粒子的影响,从而提高了算法的收敛速度和精度。4个基准测试函数的对比实验结果说明自适应扩展粒子群优化算法的有效性和优良性能。  相似文献   

6.
针对粒子群优化算法(Particle Swarm Optimization;PSO)寻优速度慢、收敛精度不高且搜索结果波动性较大的缺点;提出了一种自适应简化粒子群优化算法(Self-Adjusted Simplified Particle Swarm Optimization;SASPSO)。在每次迭代过程中;粒子只受全局最优解影响;且加入按一定规律分布的锁定因子;令粒子受影响的程度有规律性。同时;利用锁定因子和当前粒子位置令惯性权重自适应配置;更有效地利用惯性权重对粒子群优化算法的影响。引入4种近期提出的改进粒子群算法同时搜索不同维度时的18个基准函数;与SASPSO的搜索结果对比;并使用T-test进行差异性分析。为了进一步分析算法性能;统计5个改进算法搜索100维函数达到期望值时的成功率与平均迭代次数。实验结果证明;SASPSO在无约束问题寻优中的收敛速度、寻优精度有了明显提升;且搜索结果异常值较少;波动性弱。将SASPSO应用于机床主轴结构参数优化问题;结果显示SASPSO优化性能更好。  相似文献   

7.
为了有效提高粒子群优化算法的收敛速度和搜索精度,增强算法跳出局部最优,寻得全局最优的能力,提出了一种改进的简化粒子群优化算法。该算法考虑了粒子惯性、个体经验和全局经验对于位置更新影响力的不同,改进了位置更新公式,克服了粒子群优化算法收敛速度慢和易陷入局部最优的缺点。标准函数测试结果表明该改进算法的收敛速度和搜索精度有了很大的提高。  相似文献   

8.
自逃逸云简化粒子群优化算法   总被引:3,自引:0,他引:3       下载免费PDF全文
sPSO仍继承了bPSO易陷入局部极值点的缺陷,而且其进化后期收敛速度和精度也有待进一步改善.基于此,提出一种基于云理论的简化粒子群优化算法(简称cloud-sPSO):对不再进化的个体,借鉴复形法的思想,进行尽可能的进化逃逸;而当种群进化停滞时,由基本云发生器对当前群体最优粒子实行变异操作.对几个经典测试函数进行实验的结果表明,cloud-sP SO不仅能够有效摆脱局部极值点,而且收敛速度和精度也有极大地提高.  相似文献   

9.
传统的粒子群算法训练神经网络的水质评价模型有学习速度慢,容易陷入局部最优和精确性不高的缺点。为了克服模型的缺点,提出了利用改进的自适应量子粒子群算法训练T-S模糊神经网络的新模型,新的自适应量子粒子群算法通过在算法中引入聚集度的概念,使得算法可以在迭代中自适应地调整收缩扩张系数,让算法更具动态自适应性。新的模型结合了量子粒子群算法和T-S模糊神经网络的优点,提高了模型的泛化能力。通过对东江湖流域站点2002到2013年的水文数据进行实验,结果显示,该模型比其他神经网络模型的评价结果具有更高的效率,适合被用于日常水质评价工作。  相似文献   

10.
一种动态改变权值的简化粒子群算法   总被引:3,自引:1,他引:3  
基本粒子群优化算法(bPSO)具有容易陷入局部极值、进化后期收敛速度慢、精度低等缺陷,而舍弃了速度项的简化粒子群算法(sPSO)在保证了收敛速度和精度的同时使算法更加简练.文中提出了一种动态改变权值的简化粒子群算法.并经实验证明,该算法在搜优精度和收敛速度上具有明显的优势.  相似文献   

11.
综合改进的粒子群神经网络算法   总被引:5,自引:0,他引:5  
粒子群优化算法是一种解决非线性、不可微和多峰值复杂优化问题的优秀算法,但该算法在进化后期容易出现速度变慢以及早熟的现象;BP神经网络的学习算法是基于梯度下降这一本质的,因此存在着容易陷于局部极小值,收敛速度慢,训练时间长等问题.针对上述现象,对粒子群优化算法进行了增强粒子多样性和避免种群陷入早熟两个方面的改进,并提出了一种基于改进算法的粒子群神经网络算法,最后通过在IRIS数据集上进行的仿真实验验证了改进的有效性.  相似文献   

12.
针对粒子群算法后期收敛速度慢、易陷入局部极值的缺点,提出一种基于粒密度和最大距离积法的简 化粒子群聚类算法.通过采用线性递减与随机分布相结合的惯性权重策略、添加极值扰动算子、优化粒子个体最优位置,使粒子群算法能够快速收敛于全局最优.再把改进后的粒子群算法与K-means算法相结合,解决K-means算法因随机初始聚类中心而导致聚类效果差、不稳定等问题.通过实验分析,该算法的聚类结果准确率更高、收敛速度更快、稳定性更强.  相似文献   

13.
为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响.采用一种改进型PSO优化的模糊神经网络,将粒子群算法与模糊神经网络进行融合,发挥PSO算法全局寻优的特点,预测PM2.5颗粒物浓度的变化规律.对某市2013年PM2.5颗粒物浓度进行预测和验证,验证结果表明,该算法具备良好的预测精度.  相似文献   

14.
为了改善小波神经网络(WNN)进行流量预测的性能及避免量子粒子群算法(QPSO)搜索后期的早熟收敛缺陷,提出了一种改进的 QPSO。该算法定义粒子群聚拢度,改进收缩—扩张系数使其表示为聚拢度的函数并服从随机分布,以使粒子群具有动态自适应性,避免陷入局部最优,并通过搜索使用 WNN 待优化参数编码位置向量的粒子群的全局最优位置来实现目标参数的优化,使用本算法优化 WNN 参数,建立了基于改进的 QPSO优化 WNN 的网络流量预测模型。使用真实网络流量通过两组对比实验对其预测精度进行验证,证明了该方法的可用性。实验结果表明,该方法的预测精度优于 WNN 和 QPSO-WNN 方法。  相似文献   

15.
基于粒子群优化的深度神经网络分类算法   总被引:1,自引:0,他引:1  
针对神经网络分类算法中节点函数不可导,分类精度不够高等问题,提出了一种基于粒子群优化(PSO)算法的深度神经网络分类算法.使用深度学习中的自动编码机,结合PSO算法优化权值,利用自动编码机对输入样本数据进行编解码,为提高网络分类精度,以编码机本身的误差函数和Softmax分类器的代价函数加权求和共同作为PSO算法的评价函数,使编码后的数据更加适应分类器.实验结果证明:与其他传统的神经网络相比,在邮件分类问题上,此分类算法有更高的分类精度.  相似文献   

16.
针对流程工业神经网络建模时,BP算法的局部收敛问题,采用模糊粒子群算法改进神经网络学习问题。该算法将模糊粒子群引入神经网络学习算法,使得粒子群的权重自适应更新,同时模糊粒子群自适应调整神经网络权重参数,改进网络收敛性。将算法用于建立乙烯裂解炉出口温度(COT)、裂解产品收率软测量模型,取得了较好的应用效果。  相似文献   

17.
基于PSO和BP复合算法的模糊神经网络控制器   总被引:1,自引:0,他引:1  
为了克服单独应用粒子群算法(PSO)或BP算法训练模糊神经网络控制器参数时存在的缺陷,提出了一种训练模糊神经网络参数的PSO+BP算法。该算法将二者相结合,即在PSO算法中加入一个BP算子,以充分利用PSO算法的全局寻优能力和BP算法的局部搜索能力,从而更有效地提高其收敛速度、训练效率和提高该模糊神经网络控制器的控制效果。最后的仿真实验结果验证了该基于PSO+BP复合算法的模糊神经网络控制器的有效性和可行性。  相似文献   

18.
彭建喜  喻晓 《微型机与应用》2012,31(1):64-66,72
自适应变异粒子群算法具备了基本粒子群算法和遗传算法优点,用此算法寻找BP网络较好的网络权值和阈值,使得BP网络的全局误差最小化,不仅可以克服基本BP算法收敛速度慢和易陷入局部极值的局限,而且模型的精度高。仿真实验结果表明,本算法与传统的分类方法相比,具有更高的正确率.验证了自适应变异粒子群算法优化BP神经网络是一种有效的分类方法。  相似文献   

19.
为了提高语音端点检测率,提出一种改进动量粒子群优化神经网络的语音端点检测算法(WA-IMPSO-BP)。利用小波分析提取语音信号的特征量,将特征向量作为BP神经网络输入进行学习,并采用粒子群算法优化BP神经网络参数,建立语音端检测模型,在Matlab环境下进行仿真实验。仿真结果表明,WA-IMPSO-BP提高了语音端点检测率,有效降低了虚检率和漏检率,表示WA-IMPSO-BP是一种检测率高,抗噪性能强的语音检测算法。  相似文献   

20.
基于粒子群优化的模糊C-均值聚类改进算法   总被引:3,自引:3,他引:3  
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号