首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A method for the rapid identification of Bacillus spores is proposed, based on the selective release and chemical digestion of small, acid-soluble spore proteins (SASPs). Microwave-assisted acid hydrolysis of SASPs from B. anthracis str. Sterne and B. subtilis str. 168 was accomplished in a single step requiring only 90 s of heating. The peptide products of the chemical digestion were identified by postsource decay sequencing with a MALDI-TOF-MS equipped with a curved-field reflectron. The specificity of the observed SASP peptides was evaluated using a cross-species sequence search. The incomplete nature of the acid digestion under these conditions allowed detection of the digest products along with the proteins from which they originated, which increased species identification confidence. The feasibility of this approach for the rapid identification of Bacillus species was further demonstrated by analyzing a mixture of B. subtilis str. 168 and B. anthracis str. Sterne spores.  相似文献   

2.
An approach is tested here as a rapid screening method for Bacillus spore species employing bacterial peptide analysis with a miniaturized MALDI TOF mass spectrometer. A limited set of tryptic peptides was generated in situ following selective solubilization of the small, acid-soluble protein family (SASP) from spore samples on the MALDI sample holder. To facilitate species identification, a compact database was created comprising masses of the tryptic cleavage products generated in silico from all Bacillus and Clostridium SASPs whose sequences are available in public databases. Experimental measurements were matched against the custom-made database, and a published statistical model was then used to evaluate the probability of false identifications.  相似文献   

3.
The detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy (LIBS) is investigated using aerosolized Bacillus spores. Spores of Bacillus atrophaeous, Bacillus pumilus, and Bacillus stearothemophilus were introduced into an aerosol flow stream in a prescribed manner such that single-particle LIBS detection was realized. Bacillus spores were successfully detected based on the presence of the 393.4- and 396.9-nm calcium atomic emission lines. Statistical analyses based on the aerosol number density, the LIBS-based spore sampling frequency, and the distribution of the resulting calcium mass loadings support the conclusion of individual spore detection within single-shot laser-induced plasmas. The average mass loadings were in the range of 2-3 fg of calcium/Bacillus spore, which corresponds to a calcium mass percentage of approximately 0.5%. While individual spores were detected based on calcium emission, the resulting Bacillus spectra were free from CN emission bands, which has implications for the detection of elemental carbon, and LIBS-based detection of single spores based on the presence of magnesium or sodium atomic emission was unsuccessful. Based on the current instrumental setup and analyses, real-time LIBS-based detection and identification of single Bacillus spores in ambient (i.e., real life) conditions appears unfeasible.  相似文献   

4.
Top-down proteomics for rapid identification of intact microorganisms   总被引:2,自引:0,他引:2  
We apply MALDI-TOF/TOF mass spectrometry for the rapid and high-confidence identification of intact Bacillus spore species. In this method, fragment ion spectra of whole (undigested) protein biomarkers are obtained without the need for biomarker prefractionation, digestion, separation, and cleanup. Laser-induced dissociation (unimolecular decay) of higher mass (>5 kDa) precursor ions in the first TOF analyzer is followed by reacceleration and subsequent high-resolution mass analysis of the resulting sequence-specific fragments in a reflectron TOF analyzer. In-house-developed software compares an experimental MS/MS spectrum with in silico-generated tandem mass spectra from all protein sequences, contained in a proteome database, with masses within a preset range around the precursor ion mass. A p-value, the probability that the observed matches between experimental and in silico-generated fragments occur by chance, is computed and used to rank the database proteins to identify the most plausible precursor protein. By inference, the source microorganism is then identified on the basis of the identification of individual, unique protein biomarker(s). As an example, intact Bacillus atrophaeus and Bacillus cereus spores, either pure or in mixtures, were unambiguously identified by this method after fragmenting and identifying individual small, acid-soluble spore proteins that are specific for each species. Factors such as experimental mass accuracy and number of detected fragment ions, precursor ion charge state, and sequence-specific fragmentation have been evaluated with the objective of extending the approach to other microorganisms. MALDI-TOF/TOF-MS in a lab setting is an efficient tool for in situ confirmation/verification of initial microorganism identification.  相似文献   

5.
We have fully characterized the mass spectral signatures of individual Bacillus atrophaeus spores obtained using matrix-free laser desorption/ionization bioaerosol mass spectrometry (BAMS). Mass spectra of spores grown in unlabeled, 13C-labeled, and 15N-labeled growth media were used to determine the number of carbon and nitrogen atoms associated with each mass peak observed in mass spectra from positive and negative ions. To determine the parent ion structure associated with fragment ion peaks, the fragmentation patterns of several chemical standards were independently determined. Our results confirm prior assignments of dipicolinic acid, amino acids, and calcium complex ions made in the spore mass spectra. The identities of several previously unidentified mass peaks, key to the recognition of Bacillus spores by BAMS, have also been revealed. Specifically, a set of fragment peaks in the negative polarity is shown to be consistent with the fragmentation pattern of purine nucleobase-containing compounds. The identity of m/z = +74, a marker peak that helps discriminate B. atrophaeus from Bacillus thuringiensis spores grown in rich media is [N1C4H12]+. A probable precursor molecule for the [N1C4H12]+ ion observed in spore spectra is trimethylglycine (+N(CH3)3CH2COOH), which produces a m/z = +74 peak when ionized in the presence of dipicolinic acid. A clear assignment of all the mass peaks in the spectra from bacterial spores, as presented in this work, establishes their relationship to the spore chemical composition and facilitates the evaluation of the robustness of "marker" peaks. This is especially relevant for peaks that have been used to discriminate Bacillus spore species, B. thuringiensis and B. atrophaeus, in our previous studies.  相似文献   

6.
The rapid chemical analysis of individual cells is an analytical capability that will profoundly impact many fields including bioaerosol detection for biodefense and cellular diagnostics for clinical medicine. This article describes a mass spectrometry-based analytical technique for the real-time and reagentless characterization of individual airborne cells without sample preparation. We characterize the mass spectral signature of individual Bacillus spores and demonstrate the ability to distinguish two Bacillus spore species, B. thuringiensis and B.atrophaeus, from one another very accurately and from the other biological and nonbiological background materials tested with no false positives at a sensitivity of 92%. This example demonstrates that the chemical differences between these two Bacillus spore species are consistently and easily detected within single cells in seconds.  相似文献   

7.
Raman spectroscopy is being evaluated as a candidate technology for waterborne pathogen detection. We have investigated the impact of key experimental and background interference parameters on the bacterial species level identification performance of Raman detection. These parameters include laser-induced photodamage threshold, composition of water matrix, and organism aging in water. The laser-induced photodamage may be minimized by operating a 532 nm continuous wave laser excitation at laser power densities below 2300 W/cm(2) for Grampositive Bacillus atrophaeus (formerly Bacillus globigii, BG) vegetative cells, 2800 W/cm(2) for BG spores, and 3500 W/cm(2) for Gram-negative E. coli (EC) organisms. In general, Bacillus spore microorganism preparations may be irradiated with higher laser power densities than the equivalent Bacillus vegetative preparations. In order to evaluate the impact of background interference and organism aging, we selected a biomaterials set comprising Gram-positive (anthrax simulants) organisms, Gram-negative (plague simulant) organisms, and proteins (toxin simulants) and constructed a Raman signature classifier that identifies at the species level. Subsequently, we evaluated the impact of tap water and storage time in water (aging) on the classifier performance when characterizing B. thuringiensis spores, BG spores, and EC cell preparations. In general, the measured Raman signatures of biological organisms exhibited minimal spectral variability with respect to the age of a resting suspension and water matrix composition. The observed signature variability did not substantially degrade discrimination performance at the genus and species levels. In addition, Raman chemical imaging spectroscopy was used to distinguish a mixture of BG spores and EC cells at the single cell level.  相似文献   

8.
Weaponized spores of a pathogenic bacterium such as Bacillus anthracis are a new critical threat to mankind. The occurrences in New York and south Florida in 2001 showed the potential capability of the spores to be used for mass destruction. Due to their stealthiness during the infection and resistance to harsh environment, an early and prompt detection of the spores before they endanger the population is a significant issue. In this paper, we present a method of instant identification of Bacillus subtilis (nonpathogenic simulant for Bacillus anthracis) spores by constructing a dual quartz crystal microbalance (QCM) immunosensing system. A set of 10-MHz AT-cut QCMs operating in thickness shear mode are employed in an enclosed flowcell. Specificity is maintained through the use of an immuno-sensing layer consisting of monoclonal antibodies raised against spores of a single Bacillus species. The fidelity of sensing parameters is ensured by the presence of a reference device coated with an antibody that is not specific for the target antigen. Associating the QCM response signature with the specific binding of a particular species of Bacillus spore to an antibody has implications for future identification of pathogenic substances.  相似文献   

9.
A minisonicator to rapidly disrupt bacterial spores for DNA analysis.   总被引:9,自引:0,他引:9  
Concerns about the use of anthrax spores as a weapon of mass destruction have motivated the development of portable instruments capable of detecting and monitoring a suspected release of the agent. Optimal detection of bacterial spores by PCR requires that the spores be disrupted to make the endogenous DNA available for amplification. The entire process of spore lysis, PCR, and detection can take several hours using conventional methods and instruments. In this report, a minisonicator and prototype spore lysis cartridge were built to disrupt Bacillus spores in 30 s for rapid, real-time PCR analysis. Utilization of the minisonicator improved PCR analysis by decreasing the limit of detection, reducing the time of detection, and increasing the signal amplitude. Total time of spore disruption and detection using the minisonicator and a microchip PCR instrument was less than 15 min.  相似文献   

10.
A novel ion trap time-of-flight hybrid mass spectrometer (qIT-TOF MS) has been applied for peptide sequencing in proteolytic digests generated from spore mixtures of Bacilli. The method of on-probe solubilization and in situ proteolytic digestion of small, acid-soluble spore proteins has been recently developed in our laboratory, and microorganism identification in less than 20 min was accomplished. In this study, tryptic peptides were generated in situ from complex spore mixtures of B. subtilis 168, B. globigii, B. thuringiensis subs. Kurstaki, and B. cereus T, respectively. MALDI analysis of bacterial peptides generated was performed with an average mass resolving power of 6200 and a mass accuracy of up to 10 ppm using a trap-TOF tandem configuration. Precursor ions of interest were usually selected and stored in the quadrupole ion trap with their complete isotope distribution by choosing a window of +/- 2 Da. Sequence-specific information on isolated protonated peptides was gained via tandem MS experiments with an average mass resolving power of 4450 for product ion analysis, and protein and bacterial sources were identified by database searching.  相似文献   

11.
The feasibility of using a novel detection scheme for the analysis of biological warfare agents is demonstrated using Bacillus globigii spores, a surrogate species for Bacillus anthracis. In this paper, a sensitive and selective enzyme-linked immunosorbent assay using a novel fluorogenic alkaline phosphatase substrate (dimethylacridinone phosphate) is combined with a compact biochip detection system, which includes a miniature diode laser for excitation. Detection of aerosolized spores was achieved by coupling the miniature system to a portable bioaerosol sampler, and the performance of the antibody-based recognition and enzyme amplification method was evaluated. The bioassay performance was found to be compatible with the air sampling device, and the enzymatic amplification was found to be an attractive amplification method for detection of low spore concentrations. The combined portable bioaerosol sampler and miniature biochip system detected 100 B. globigii spores, corresponding to 17 aerosolized spores/L of air. Moreover, the incorporation of the miniature diode laser with the self-contained biochip design allows for a compact system that is readily adaptable to field use. In addition, these studies have included investigations into the tradeoff between assay time and sensitivity.  相似文献   

12.
The fluorescence spectra of Bacillus spores are measured at excitation wavelengths of 280, 310, 340, 370, and 400 nm. When cluster analysis is used with the principal-component analysis, the Bacillus globigii spores can be distinguished from the other species of Bacillus spores (B. cereus, B. popilliae, and B. thuringiensis). To test how robust the identification process is with the fluorescence spectra, the B. globigii is obtained from three separate preparations in different laboratories. Furthermore the fluorescence is measured before and after washing and redrying the B. globigii spores. Using the cluster analysis of the first two or three principal components of the fluorescence spectra, one is able to distinguish B. globigii spores from the other species, independent of preparing or washing the spores.  相似文献   

13.
Alexander TA  Le DM 《Applied optics》2007,46(18):3878-3890
Surface-enhanced-Raman-spectroscopy (SERS) can be made an attractive approach for the identification of Raman-active compounds and biological materials (i.e., toxins, viruses, or intact bacterial cells or spores) through development of reproducible, spatially uniform SERS-active substrates. Recently, reproducible (from substrate to substrate), spatially homogeneous (over large areas) SERS-active substrates have been commercialized and are now available in the marketplace. Scanning electron microscopy and high-resolution, tapping-mode atomic force microscopy have been used to analyze these novel plasmonic surfaces for topographical consistency. Additionally, we have assessed, by wavelength-tunable microreflectance spectrometry, the spatial distribution of the localized surface plasmon resonance (LSPR) across a single substrate surface as well as the LSPR lambda(MAX) variance from substrate to substrate. These analyses reveal that these surfaces are topologically uniform with small LSPR variance from substrate to substrate. Further, we have utilized these patterned surfaces to acquire SERS spectral signatures of four intact, genetically distinct Bacillus spore species cultivated under identical growth conditions. Salient spectral signature features make it possible to discriminate among these genetically distinct spores. Additionally, partial least squares, a multivariate calibration method, has been used to develop personal-computer-borne algorithms useful for classification of unknown spore samples based solely on SERS spectral signatures. To our knowledge, this is the first report detailing application of these commercially available SERS-active substrates to identification of intact Bacillus spores.  相似文献   

14.
We combine the use of dielectrophoretic positioning with electrical impedance measurements to detect and discriminate between individual bacterial spores on the basis of their electrical response. Using lithographically defined microelectrodes, we use dielectrophoresis to manipulate individual bacterial spores between the electrodes. The introduction of a single spore between the microelectrodes produces a significant change in electrical response that is species-dependent. When positioned between two electrodes and an AC voltage was applied, single spores caused current increases averaging 6.8 (+/-2.4) pA for Bacillus mycoides to 1.18 (+/-0.37) pA for Bacillus licheniformis. Using a mixture of spores of two different species, we demonstrate the ability to distinguish the species of individual spores in real time. This work demonstrates the feasibility of using impedance measurements for real-time detection and discrimination between different types of spores.  相似文献   

15.
Ultraviolet (UV) resonance Raman spectra of Bacillus subtilis endospores have been excited at 244 nm. Spectra can be interpreted in terms of contributions from calcium dipicolinate and nucleic acid components. Differences between spectra of spores and vegetative cells are very large and are due to the dominance of the dipicolinate features in the spore spectra. Because the DNA and RNA composition of B. subtilis spores is known and because the cross-sections of Raman bands belonging to DNA and RNA bases are known, it is possible to calculate resonance Raman spectral cross-sections for the spore Raman peaks associated with the nucleic acids. The cross-sections of peaks associated with calcium dipicolinate have been measured from aqueous solutions. Cross-section values of the dominant 1017 cm(-1) calcium dipicolinate peak measured from the Bacillus spores have been shown to be consistent with a calcium dipicolinate composition of ten percent or less by weight in the spores. It is suggested that spectral cross-sections of endospores excited at 244 nm can be estimated to be the sum of the cross-sections of the calcium dipicolinate, DNA, and RNA components of the spore. It appears that the peaks due to DNA and RNA can be used as an internal standard in the calculation of spore Raman peak cross-sections, and potentially the amount of calcium dipicolinate in spores. It is estimated on the basis of known nucleic acid base cross-sections that the most intense Raman band of the Bacillus subtilis spore spectra has a cross-section of no more than 4 x 10(-18) cm(2)/mol-sr.  相似文献   

16.
Silica particles are mainly used for the concentration of nucleic acid for diagnostic purposes. This is usually done under acidic or chaotropic conditions that will demolish most of the living organisms and prevent the application of other diagnostic tests. Here we describe the development of a method for the capturing and concentration of Bacillus spores using silica magnetic particles to enable fast and sensitive detection. We have shown that capturing various Bacilli spores via silica magnetic particles is limited, with large differences between spore batches (42 +/- 25%). The hydrophobic exosporium layer of spore limits the capture by the hydrophilic silica beads. Partial removal of Bacillus exosporium increases capture efficiency. To increase capturing efficiency without harming the spores' viability, a cationic lipid, didecyldimethylammonium bromide (DDAB), was used as a coat for the negatively charged silica particles. DDAB treatment increased capture efficiency from 42% to more than 90%. Using this method, we were able to capture as few as 100 Bacillus anthracis spores/mL with 90% efficacy. Release of captured spores was achieved by the addition of albumin. The capture and release processes were verified by plating and by flow cytometry using light scatter analysis. The method is simple, efficient, easy to operate, and fast.  相似文献   

17.
Intact protein biomarkers from Bacillus cereus T spores have been analyzed by high-resolution tandem Fourier transform ion cyclotron resonance mass spectrometry. Two techniques have been applied for excitation of the isolated multiply charged precursor ion species: sustained off-resonance irradiation/collisionally activated dissociation and electron capture dissociation. Fragmentation-derived sequence tags and BLAST sequence similarity proteome database searches allow unequivocal identification of the major biomarker protein with unprecedented specificity. Sequence-specific fragmentation patterns further confirm protein identification. Moreover, methodology combining accurate mass measurements of intact proteins with additional information contained in a proteome database permits tentative assignment of several other protein biomarkers isolated from the B. cereus T spores. We argue that approaches involving tandem MS of protein biomarkers, combined with bioinformatics, can drastically improve the specificity of individual microorganism identification, particularly in complex environments.  相似文献   

18.
Bacillus anthracis, the causative agent of anthrax, is considered as one of the most important pathogens in the list of bioterrorism threats. This paper describes the synthesis of electrically active magnetic (EAM) nanoparticles and their application in a direct-charge transfer biosensor for detecting B. anthracis Sterne endospores. These EAM nanoparticles were synthesized from aniline monomer made electrically active by acid doping and gamma iron (III) oxide nanoparticles resulting in nanomaterials with diameters ranging from 50 to 200 nm. Room temperature hysteresis measurements of the synthesized nanomaterials using a quantum design MPMS SQUID magnetometer showed that their saturation magnetization values were between 61.1 and 33.5 emu/gm. The structural morphology of the nanomaterial was studied using transmission electron microscopy and the electronic diffraction patterns were observed to determine their crystalline nature. The EAM nanoparticles were coated with antibodies specific to B. anthracis Sterne endospores and used to capture the target antigen from varying spore concentrations ( to ) by applying a magnetic field. The immunomagnetically captured spores were then applied to a direct-charge transfer biosensor having a dimension of 5 mm 60 mm. The detection of the spores was based on the capillary flow of the captured spores aided by a direct-charge transfer of the EAM nanoparticle. The electric signal generated was recorded for 6 min in a reagentless process. The biosensor was able to detect the presence of B. anthracis spores at a concentration of 4.2. Specificity studies were also carried out to determine the biosensor responses in the presence of nontarget antigens. This study shows the novel application of EAM nanoparticles both as an immunomagnetic concentrator and a transducer in a portable, easy to use, biosensor that has the potential to be used as a rapid detection device for defense and biosecurity.  相似文献   

19.
Rubel GO  Fung KH 《Applied optics》1999,38(31):6673-6676
Single-particle levitation in conjunction with 264.3-nm laser excitation is used to measure the fluorescence emission of individual particles of Bacillus globigii spores. With precise humidity control, the fluorescence emission of wetted and desiccated Bacillus spore particles is measured from 300 to 450 nm. Comparison of spectra for Bacillus spores suspended in a standard buffer aqueous solution and for a desiccated 10-mum-diameter aggregate Bacillus spore particle shows that the spectra is virtually indistinguishable. However, at 85% relative humidity, corresponding to a 4.5M sodium chloride solution, the spore spectra redshifts by approximately 25 nm. It is postulated that the spectra redshifting is a result of specific interactions between the tyrosine fluorophore of the Bacillus spore and the phosphate moieties in the buffer solution.  相似文献   

20.
Ultrasonic cavitation was employed to enhance sensitivity of bacterial spore immunoassay detection, specifically, enzyme-linked immunosorbent assay (ELISA) and resonant mirror (RM) sensing. Bacillus spore suspensions were exposed to high-power ultrasound in a tubular sonicator operated at 267 kHz in both batch and flow modes. The sonicator was designed to deliver high output power and is in a form that can be cooled efficiently to avoid thermal denaturation of antigen. The 30-s batch and cooled flow (0.3 mL/min) sonication achieved an approximately 20-fold increase in ELISA sensitivity compared to unsonicated spores by ELISA. RM sensing of sonicated spores achieved detection sensitivity of approximately 10(6) spores/mL, whereas unsonicated spores were undetectable at the highest concentration tested. Improvements in detection were associated with antigen released from the spores. Equilibrium temperature increase in the tubular sonicator was limited to 14 K after 30 min and was maintained for 6 h with cooling and flow (0.3 mL/min). The work described here demonstrates the utility of the tubular sonicator for the improvement in the sensitivity of the detection of spores and its suitability as an in-line component of a rapid detection system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号