首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noncoherent space-frequency coded MIMO-OFDM   总被引:3,自引:0,他引:3  
Recently, the use of coherent space-frequency coding in orthogonal frequency-division multiplexing (OFDM)-based frequency-selective multiple-input multiple-output (MIMO) fading channels has been proposed. Acquiring knowledge of the fading coefficients in a MIMO channel is already very challenging in the frequency-flat (fast) fading case. In the frequency-selective case, this task becomes significantly more difficult due to the presence of multiple paths, which results in an increased number of parameters to be estimated. In this paper, we address code design for noncoherent frequency-selective MIMO-OFDM fading links, where neither the transmitter nor the receiver knows the channel. We derive the code design criteria, quantify the maximum achievable diversity gain, and provide explicit constructions of full-diversity (space and frequency) achieving codes along with an analytical and numerical performance assessment. We also demonstrate that unlike in the coherent case, noncoherent space-frequency codes designed to achieve full spatial diversity in the frequency-flat fading case can fail completely to exploit not only frequency diversity but also spatial diversity when used in frequency-selective fading environments. We term such codes "catastrophic.".  相似文献   

2.
In this brief, a low-complexity hardware architecture for multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) symbol detectors with two transmit and two receive antennas is proposed. The detectors support two MIMO-OFDM schemes of space-frequency block coded OFDM and space-division multiplexing OFDM in order to achieve higher performance and throughput. However, symbol detection processes for these two schemes have high computational complexity, which is a burden to hardware implementation of MIMO-OFDM symbol detectors. In order to reduce complexity, the proposed symbol detector is designed with shared architecture, where similar functional blocks are merged and share the hardware resources, and results in the reduction of logic gates by 34% over a conventional architecture employing two individual detectors  相似文献   

3.
In this paper, the effect of a general spatial and temporal fading correlation structure on the performance of coded multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) systems is studied. The analysis handles an arbitrary joint transmit-receive spatial correlation model, including the non-Kronecker model. An upper bound on the maximum achievable diversity order for frequency-selective MIMO-OFDM systems with general temporal and spatial correlation is derived. Furthermore, a space-time-frequency code design that can achieve the upper bound for any arbitrarily correlated channel scenario is provided. The general framework of the analysis includes space-frequency (SF)-coded systems as a special case. For the SF-coded MIMO-OFDM system, it is shown that any SF code designed to achieve full diversity in the independent fading channel can achieve full diversity in an arbitrary spatially correlated channel. The derived analytical results are consistent with those in the existing literature for special correlation structures. Extensive simulation results are provided to confirm the theoretical analysis.  相似文献   

4.
This paper considers the problem of space-frequency code design for frequency-selective multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) modulation. We show that space-time codes achieving full diversity in quasistatic flat fading environment can be used to construct space-frequency codes that can achieve the maximum diversity available in frequency-selective MIMO fading channels. Since the codes are constructed via a simple mapping from space-time codes to space-frequency codes, the abundant classes of existing space-time block and trellis codes can be used for full diversity transmission in MIMO-OFDM systems. The proposed mapping provides a tradeoff between the achieved diversity order and the symbol rate. Moreover, we characterize the performance of the space-frequency codes obtained via the mapping by finding lower and upper bounds on their coding advantages as functions of the coding advantages of the underlying space-time codes. This result will allow us to investigate the effects of the delay distribution and the power distribution of the channel impulse responses on the performance of the resulting space-frequency codes. Extensive simulation results are also presented to illustrate and support the theory.  相似文献   

5.
In this paper we analyze the performance of an important class of MIMO systems that of orthogonal space-time block codes concatenated with channel coding. This system configuration has an attractive combination of simplicity and performance. We study this system under spatially independent fading as well as correlated fading that may arise from the proximity of transmit or receive antennas or unfavorable scattering conditions. We consider the effects of time correlation and present a general analysis for the case where both spatial and temporal correlations exist in the system. We present simulation results for a variety of channel codes, including convolutional codes, turbo codes, trellis coded modulation (TCM), and multiple trellis coded modulation (MTCM), under quasi-static and block-fading Rayleigh as well as Rician fading. Simulations verify the validity of our analysis.  相似文献   

6.
The capacity of multiple-input multiple-output (MIMO) wireless channels is limited by both the spatial fading correlation and rank deficiency of the channel. While spatial fading correlation reduces the diversity gains, rank deficiency due to double scattering or keyhole effects decreases the spatial multiplexing gains of multiple-antenna channels. In this paper, taking into account realistic propagation environments in the presence of spatial fading correlation, double scattering, and keyhole effects, we analyze the ergodic (or mean) MIMO capacity for an arbitrary finite number of transmit and receive antennas. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is allocated to each of the transmit antennas. Using some statistical properties of complex random matrices such as Gaussian matrices, Wishart (1928) matrices, and quadratic forms in the Gaussian matrix, we present a closed-form expression for the ergodic capacity of independent Rayleigh-fading MIMO channels and a tight upper bound for spatially correlated/double scattering MIMO channels. We also derive a closed-form capacity formula for keyhole MIMO channels. This analytic formula explicitly shows that the use of multiple antennas in keyhole channels only offers the diversity advantage, but provides no spatial multiplexing gains. Numerical results demonstrate the accuracy of our analytical expressions and the tightness of upper bounds.  相似文献   

7.
In 4G broadband wireless communications, multiple transmit and receive antennas are used to form multiple input multiple output (MIMO) channels to increase the capacity (by a factor of the minimum number of transmit and receive antennas) and data rate. In this paper, the combination of MIMO technology and orthogonal frequency division multiplexing (OFDM) systems is analyzed for wideband transmission which mitigates the intersymbol interference and hence enhances system capacity. In MIMO-OFDM systems, the coding is done over space, time, and frequency domains to provide reliable and robust transmission in harsh wireless environment. Also, the performance of space time frequency (STF) coded MIMO-OFDM is analyzed with space time and space frequency coding as special cases. The maximum achievable diversity of STF coded MIMO-OFDM is analyzed and bit error rate performance improvement is verified by simulation results. Simulations are carried out in harsh wireless environment, whose effect is mitigated by using higher tap order channels. The complexity is resolved by employing sphere decoder at the receiver.  相似文献   

8.
The potential benefits of multiple-antenna systems may be limited by two types of channel degradations-rank deficiency and spatial fading correlation of the channel. In this paper, we assess the effects of these degradations on the diversity performance of multiple-input multiple-output (MIMO) systems, with an emphasis on orthogonal space-time block codes (OSTBC), in terms of the symbol error probability (SEP), the effective fading figure (EFF), and the capacity at low signal-to-noise ratio (SNR). In particular, we consider a general family of MIMO channels known as double-scattering channels-i.e., Rayleigh product MIMO channels-which encompasses a variety of propagation environments from independent and identically distributed (i.i.d.) Rayleigh to degenerate keyhole or pinhole cases by embracing both rank-deficient and spatial correlation effects. It is shown that a MIMO system with transmit and receive antennas achieves the diversity of order in a double-scattering channel with effective scatterers. We also quantify the combined effect of the spatial correlation and the lack of scattering richness on the EFF and the low-SNR capacity in terms of the correlation figures of transmit, receive, and scatterer correlation matrices. We further show the monotonicity properties of these performance measures with respect to the strength of spatial correlation, characterized by the eigenvalue majorization relations of the correlation matrices.  相似文献   

9.
Multiple transmit and receive antennas can be used to form multiple-input multiple-output (MIMO) channels to increase the capacity by a factor of the minimum number of transmit and receive antennas. In this paper, orthogonal frequency division multiplexing (OFDM) for MIMO channels (MIMO-OFDM) is considered for wideband transmission to mitigate intersymbol interference and enhance system capacity. The MIMO-OFDM system uses two independent space-time codes for two sets of two transmit antennas. At the receiver, the independent space-time codes are decoded using prewhitening, followed by minimum-Euclidean-distance decoding based on successive interference cancellation. Computer simulation shows that for four-input and four-output systems transmitting data at 4 Mb/s over a 1.25 MHz channel, the required signal-to-noise ratios (SNRs) for 10% and 1% word error rates (WER) are 10.5 dB and 13.8 dB, respectively, when each codeword contains 500 information bits and the channel's Doppler frequency is 40 Hz (corresponding normalized frequency: 0.9%). Increasing the number of the receive antennas improves the system performance. When the number or receive antennas is increased from four to eight, the required SNRs for 10% and 1% WER are reduced to 4 dB and 6 dB, respectively. Therefore, MIMO-OFDM is a promising technique for highly spectrally efficient wideband transmission.  相似文献   

10.
曹瑞  雷霞  肖悦 《电讯技术》2020,(3):268-272
多输入多输出(Multiple-Input Multiple-Output,MIMO)技术和正交频分复用(Orthogonal Frequency-Division Multiplexing,OFDM)技术因其优秀的抗符号间干扰特性被广泛应用于高速数据传输,但传统MIMO-OFDM系统的检测需要在空频域中联合搜索调幅/调相信号,复杂度高。为降低系统复杂度,将索引调制技术与MIMO-OFDM系统相结合提出了一种激活特定空频单元,利用索引传输额外信息的新方法,并通过理论分析获得了该方法的近似闭合性能表达式。此外,利用数值仿真对分析结果进行了验证。理论推导与系统仿真结果均显示了所提方法能在不增加发射天线数目的前提下提高系统的发射分集增益。上述理论结果可以为下一代低功耗低复杂度的空频系统设计提供借鉴。  相似文献   

11.
The emerging ultrawideband (UWB) system offers a great potential for the design of high speed short-range wireless communications. In order to satisfy the growing demand for higher data rates, one possible solution is to exploit both spatial and multipath diversities via the use of multiple-input multiple-output (MIMO) and proper coding techniques. In this paper, we propose a general framework to analyze the performance of multiband UWB-MIMO systems regardless of specific coding schemes. A combination of space-time-frequency (STF) coding and hopping multiband OFDM modulation is also proposed to fully exploit all of the available spatial and frequency diversities, richly inherent in UWB environments. We quantify the performance merits of the proposed scheme in case of Nakagami-m frequency-selective fading channels. Different from the conventional STF coded MIMO-OFDM system, the performance of the STF coded hopping multiband UWB does not depend on the temporal correlation of the propagation channel. We show that the maximum achievable diversity of multiband UWB-MIMO system is the product of the number of transmit and receive antennas, the number of multipath components, and the number of jointly encoded OFDM symbols. Interestingly, the diversity gain does not severely depend on the fading parameter m, and the diversity advantage obtained under Nakagami fading with arbitrary m parameter is almost the same as that obtained in Rayleigh fading channels. Finally, simulation results are presented to support the theoretical analysis.  相似文献   

12.
We propose an efficient space-frequency coded orthogonal frequency-division multiplexing (OFDM) system for high-speed transmission over wireless links. The analytical expression for the pairwise probability of the proposed space-frequency coded OFDM system is derived in slow, space- and frequency-selective fading channels. The design criteria of trellis codes used in the proposed system are then developed and discussed. It is shown that the proposed space-frequency coded OFDM can efficiently achieve the full diversity provided by the fading channel with low trellis complexity, while for traditional space-frequency coded OFDM systems, we need to design space-time trellis codes with high trellis complexity to exploit the maximum achievable diversity order. The capacity properties of space-frequency coded OFDM over multipath fading channels are also studied. Numerical results are provided to demonstrate the significant performance improvement obtained by the proposed space-frequency coded OFDM scheme, as well as the excellent outage capacity properties.  相似文献   

13.
Multiple-input multiple-output (MIMO) antenna systems employ spatial multiplexing to increase spectral efficiency or transmit diversity to improve link reliability. The performance of these signaling strategies is highly dependent on MIMO channel characteristics, which, in turn, depend on antenna height and spacing and richness of scattering. In practice, large antenna spacings are often required to achieve significant multiplexing or diversity gain. The use of dual-polarized antennas (polarization diversity) is a promising cost- and space-effective alternative, where two spatially separated uni-polarized antennas are replaced by a single antenna structure employing orthogonal polarizations. This paper investigates the performance of spatial multiplexing and transmit diversity (Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-58, Oct. 1998) scheme) in MIMO wireless systems employing dual-polarized antennas. In particular, we derive estimates for the uncoded average symbol error rate of spatial multiplexing and transmit diversity and identify channel conditions where the use of polarization diversity yields performance improvements. We show that while improvements in terms of symbol error rate of up to an order of magnitude are possible in the case of spatial multiplexing, the presence of polarization diversity generally incurs a performance loss for transmit diversity techniques. Finally, we provide simulation results to demonstrate that our estimates closely match the actual symbol error rates.  相似文献   

14.
In this brief, we present the design and implementation results of a digital 120 Mb/s multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) wireless LAN (WLAN) baseband processor based on the proposed decoding algorithms. The processor has two MIMO-OFDM modes, space-frequency block coded OFDM and space division multiplexed OFDM. From those, it achieves a considerable performance gain as well as supports double data rates compared to the conventional IEEE 802.11a WLANs. In the results of performance evaluation, the processor requires a signal-to-noise ratio of 1.8-27 dB for transmission modes at 10% packet error rate, and the chip is implemented with 4.8 M transistors in 3.9 times 3.9 mm2 using 0.18-mum CMOS process.  相似文献   

15.
The performance of spatial multiplexing (SM) multiple-input multiple-output (MIMO) communication systems is highly dependent on the richness of scattering, the presence of dominant components, and the interelement spacings. In this paper, a new interpretation of the impact of transmit correlation on the performance of SM is given based on a so-called "symbol-related array factor." Nonlinear signal constellations for SM over real-world fading channels are then designed by minimizing an estimate of the average symbol error rate under an average transmit power constraint. The new transmission scheme exploits the spectral efficiency advantage of SM and the robustness of eigen-beamforming. Through simulations, it is shown to be more robust against fading correlations and high Ricean K-factors than SM using the classical phase shift keying (PSK) and quadrature amplitude modulation (QAM) constellations. The symbol error rate performance of this scheme is not affected by a change in the propagation environment or the interelement distance. Furthermore, if the scheme is used on the uplink, no explicit rate-consuming feedback link from the base station to the mobile station is required.  相似文献   

16.
We analyze the mutual information of some common multiple-input multiple-output (MIMO) transmission schemes. Whereas most capacity evaluations are done under the assumption of Gaussian transmit symbols, we take into account restrictions on the transmit symbol alphabet and analyze real world signal constellations. Moreover, we include suboptimum detectors which might be applied in practical systems in the capacity evaluation. Furthermore, we consider not only spatially uncorrelated full rank channels but also channel degradations such as spatial correlation and keyhole effects. The results show that in many practical relevant cases, simple space-time block codes are a robust solution which achieves similar, sometimes even better capacities than spatial multiplexing even though they do not exploit all available MIMO dimensions.  相似文献   

17.
本文提出了频率选择性瑞利衰落信道中的对角空频分组码(DSF),研究了码的性能。分析表明,在各天线对间的信道相互独立,系统有NT个发射天线,NR个接收天线和信道冲击响应长度是L时,DSF码可实现分集增益NRNTL。此外,相关的发射天线阵列会使DSF码分集增益下降,但是对码的性能影响不大,特别是在较长的多路径信道上。因此,DSF码对于相关的衰落信道显示出优越的鲁棒性能。最终仿真结果证实了本文的分析。  相似文献   

18.
Robust linear MIMO receivers: a minimum error-rate approach   总被引:1,自引:0,他引:1  
This paper looks at the linear reception of spatially multiplexed signals across MIMO channels. We address the problem of robustness in the presence of detrimental effects such as correlation and Ricean components. We consider the error-rate performance of MIMO linear filters as these can be used in purely linear receivers or as part of each stage in successive interference canceling (SIC) receivers. We know from multiuser detection theory that minimum error-rate (MER) linear receivers significantly outperform minimum mean-square error (MMSE) receivers when correlation is high; however, no direct method exist to design the MER receiver simply. We derive a scheme allowing a closed-form approximate solution to this problem. The solution is a good approximation to the true MER receiver upon fulfillment of a certain, easily checkable, channel-related condition. The algorithms are derived first for the two-input many-output case. A generalized scheme is provided for the case of arbitrary number of inputs and outputs. The performance gain compared with that MMSE is significant and evaluated for various correlated and Ricean channels and transmit power allocation strategies.  相似文献   

19.
In this paper, we propose a differential space-frequency block code-orthogonal frequency division multiplexing (DSFBC-OFDM) scheme as a multiple-input multiple-output (MIMO) transmission technique for next generation broadcasting system. A linear decoding method for DSFBC, which performs comparably to the ML decoding method, is derived for the cases of two or four transmit antennas. A simple table lookup method is proposed to improve the efficiency of the encoding/decoding process of DSFBC for the case of non-constant modulus constellations. This not only reduces the computational load, but also removes the necessity of channel estimation. Also, synchronization techniques with a DSFBC-encoded phase reference symbol (PRS) are discussed. Finally, an MIMO channel model for the next generation broadcasting system is developed by extending the 3GPP MIMO model to fit broadcasting environments. The MIMO channel model is then used to compare BER performances of differential space block code schemes for various channel environments. Simulation results show that the DSFBC-16QAM scheme using either four transmit antennas with one receive antenna or two transmit antennas with two receive antennas achieves a performance gain of 12 dB, with a data rate twice faster than that of the conventional DQPSK scheme  相似文献   

20.
We analyze Multiple‐Input Multiple‐Output (MIMO) coded modulation systems where either Bit‐Interleaved Coded Modulation (BICM) with spatial multiplexing or concatenation of channel coding and Space‐Time Block Codes (STBCs) is used at transmission, assuming iterative Turbo‐like decoding at reception. We optimize Serially‐Concatenated Low‐Density Generator Matrix (SCLDGM) codes (a subclass of LDPC codes) for each system configuration, with the goal of assessing its ability to approach the capacity limits in either ergodic or quasi‐static channels. Our focus is on three relevant STBCs: the Orthogonal Space‐Time Block Codes (OSTBCs) for two transmit antennas (i.e., the Alamouti code), which enables optimum detection with low complexity; the Golden code, which provides a capacity increase with respect to the input constellation; and Linear Dispersion (LD) codes, which enable practical detection in asymmetrical antenna configurations (i.e., more transmit than receive antennas) for cases in which optimum detection is infeasible. We conclude that BICM without concatenation with STBCs is in general the best option, except for Alamouti‐coded 2×1 and Golden‐coded 2×2 MIMO systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号