共查询到18条相似文献,搜索用时 62 毫秒
1.
为充分利用核桃榨油后的核桃粕,研究了核桃蛋白有限酶解增溶改性的工艺,以拓宽核桃蛋白在食品工业中的应用范围,提高产品附加值。通过比较不同蛋白酶对核桃蛋白的水解度和氮溶指数的影响,筛选出胰蛋白酶为最佳用酶。在单因素试验基础上,通过二次回归正交旋转组合试验对胰蛋白酶有限酶解核桃蛋白的工艺加以优化。结果表明,最佳酶解工艺条件为:液料比10∶1,酶解温度43℃,酶解时间52 min,酶用量0.4%。最佳条件下制备的改性核桃蛋白的水解度仅为3.25%,而氮溶指数从8.74%显著提升到78.16%。 相似文献
2.
3.
4.
核桃蛋白酶法水解工艺条件研究 总被引:4,自引:0,他引:4
研究了核桃蛋白酶法水解的工艺条件,结果表明:蛋白酶种类对核桃蛋白水解作用影响较大,Alcalase 2.4L、Neutrase 0.8L对核桃蛋白水解作用较强;Alcalase 2.4L较适宜的酶解条件为酶与底物浓度比1000U/g,pH 8.0,温度60℃;Neutrase 0.8L较适合的水解条件为酶浓度为2000U/g,pH 6.0,温度45℃;Alcalase 2.4L、Neutrase 0.8L复合酶可以对核桃蛋白进行连续水解,并能提高核桃蛋白的水解度,产物肽链长度趋近于5。 相似文献
5.
为高值化利用油脂加工业的副产物——核桃饼粕,采用碱溶酸沉法从冷榨核桃饼中提取核桃蛋白(walnut protein,WP),以水解度为指标,用单因素和正交实验优化胰蛋白酶的最优酶解工艺;以脱色率和蛋白回收率为指标,确定核桃蛋白酶解液的最佳脱色工艺条件。结果表明,所提取核桃蛋白样品的纯度较高,可用于下一步的酶解和脱色实验。胰蛋白酶酶解核桃蛋白的最优条件为:pH7.5、底物浓度3%(W/V)、温度55 ℃、加酶量6 250 U/g蛋白质、酶解时间5 h。在此条件下核桃蛋白的水解度可达21.08%。活性炭对核桃蛋白酶解液的最优脱色工艺为:pH为4.5、活性炭用量为1.2%(W/V)、温度为45 ℃、脱色时间为90 min。在此条件下脱色率为78.05%,蛋白回收率为82.16%,加权综合评分为80.11分。优化了胰蛋白酶水解核桃蛋白和酶解液脱色的工艺,可为核桃饼粕的开发利用提供借鉴。 相似文献
6.
将核桃饼脱脂、碱溶酸沉制备核桃蛋白,再利用碱性蛋白酶对核桃蛋白酶解,采用单因素实验研究底物质量分数、酶解pH、酶用量、酶解温度、酶解时间对水解度的影响,在此基础上采用正交实验对酶解工艺条件进行优化,同时测定了酶解产物的溶解特性、乳化特性和起泡特性。结果表明:碱性蛋白酶酶解核桃蛋白最优酶解条件为底物质量分数5.0%、酶解pH 9.0、碱性蛋白酶(活性为10 000 U/g)用量4.0%、酶解温度50 ℃、酶解时间2 h;相较核桃蛋白,不同水解度的核桃蛋白酶解产物的表面疏水性下降,溶解特性、乳化特性和起泡特性提高。 相似文献
7.
酶解核桃蛋白制备抗氧化肽的研究 总被引:2,自引:0,他引:2
利用木瓜蛋白酶酶解核桃分离蛋白制备小分子活性肽,并研究了不同分子量段核桃小分子肽的抗氧化性能。通过单因素实验和正交实验,确定了木瓜蛋白酶制备抗氧化肽的最佳酶解条件为:pH8.5,温度50℃,酶与底物浓度之比[E]/[S]=3:100,底物浓度[S]=3.5g/100mL,酶解时间5h。用截留分子量分别为3kDa和10kDa的超滤膜将核桃粗肽液分离成<3kDa、3~10kDa及>10kDa3个分子量段,并对不同分子量段核桃多肽的抗氧化性进行了研究,结果表明,分子量<3kDa的核桃多肽的抗氧化性大于其他两个分子量段。 相似文献
8.
研究了无花果蛋白酶对酵母蛋白的水解作用。结果表明,该酶水解酵母蛋白的最佳条件为:pH5.0,53℃,激活剂为半胱氨酸,用酶量与酵母蛋白用量之比为22743U:1g,反应时间为6h。在此条件下,酵母蛋白消化率可达91.79%。 相似文献
9.
碱性蛋白酶对核桃蛋白水解条件的优化研究 总被引:1,自引:0,他引:1
根据核桃蛋白的氨基酸组成以及碱性蛋白酶的水解特性,选用碱性蛋白酶2.4 L水解核桃蛋白,制备核桃多肤.以水解度(DH)表征其反应程度.在单因素实验基础上,通过二次回归正交旋转组合实验设计确定核桃蛋白的水解条件模型及最佳工艺是:pH 7.7,温度62.4℃,加酶量7.9%,酶解时间5.9h.在此水解条件下水解度可达8.82%. 相似文献
10.
酶解方式对核桃蛋白肽及其抗氧化活性的影响 总被引:2,自引:0,他引:2
分别采用7种蛋白酶对核桃蛋白进行单酶水解,并与双酶复合酶解进行比较,考察不同酶解方式对酶解产物水解度、短肽得率和抗氧化活性的影响。结果表明,碱性蛋白酶单酶酶解核桃蛋白,产物的水解度和短肽得率显著高于其它单酶处理,分别达到18.94%和76.37%,对DPPH自由基清除能力的IC50值仅为3.23mg/mL,抗氧化活性显著高于其它处理;将碱性蛋白酶分别与其它蛋白酶组合酶解,核桃蛋白酶解产物的水解度和短肽得率均有所提高,其中与木瓜蛋白酶组合处理的水解度可达28.36%,短肽得率可提高至85.62%。双酶酶解产物对提高清除DPPH自由基和羟自由基的活性不显著,碱性蛋白酶分别与中性蛋白酶、木瓜蛋白酶的组合可以显著提高酶解产物清除超氧阴离子自由基的活性。 相似文献
11.
12.
核桃蛋白酶解工艺优化与酶解液抗氧化活性分析 总被引:1,自引:0,他引:1
采用单因素和正交实验,以水解度为评价指标,研究了加酶量、pH值、酶解温度和料液比对酶解工艺的影响。确定了碱性蛋白酶水解核桃蛋白的酶解条件:酶解温度60℃,料液比1∶25,pH10.0,加酶量7%,酶解时间为2h。对在此条件下制备的酶解液的抗氧化性进行了研究。对于水解度分别为30%、20%、10%的水解液进行了分析。结果表明,3个水解度水解液对二苯代苦味酰基自由基、羟基自由基和超氧阴离子均有较好的清除能力,且还原性较强。 相似文献
13.
采用胰蛋白酶对未脱脂的核桃浆液进行酶解,并利用Turbiscan稳定性分析仪对酶解核桃乳的稳定性进行了考察。通过单因素与正交试验优化得到最佳的酶解工艺条件为:核桃浆液浓度9%(m/m)、胰蛋白酶添加量0.4%(m/m)、反应初始p H 9.0、酶解温度55℃、酶解时间1 h,在此条件下,蛋白水解度为13.67%±0.41‰。在此基础上,利用Turbiscan稳定性分析仪考察了水解度分别为13.70%、10.20%、7.01%的酶解核桃乳样品与常规工艺样品的稳定性差异。对比背散射光谱图得出,通过酶解工艺产品底部析水层高度由0~10 mm减小至0~5 mm。由底部稳定性动力学指数曲线得到,酶解核桃乳样品稳定性动力学指数均小于对照样品,且水解度较大样品(13.70%)的稳定性指数更小。与常规工艺相比较,酶解核桃乳产品底部TSI曲线均无明显拐点,说明其底部浓度和颗粒粒径的变化幅度小且平缓,稳定性更好。 相似文献
14.
变性豆粕中蛋白质的酶水解特性的研究 总被引:6,自引:2,他引:6
变性豆粕是由大豆浸油后,经高温脱溶所得。本文以高温变性脱脂大豆粕为原料,用正交实验法对变性后在蛋白酶作用下的水解特性进行了深入研究。选用国产1398中性蛋白酶为水解酶对变性豆粕进行水解,研究了变性豆粕中蛋白质溶出率随温度、pH值、时间、底物浓度及用酶量的变化规律,找到了水解变性豆粕的最佳实验条件。为生产实践提供了基础数据,该研究结果对其它蛋白质原料的水解特性研究也具有参考价值。研究结果表明:1398中性蛋白酶水解高温变性豆粕的最佳条件为:温度45℃,时间3h,底物浓度1.0%,用酶量1600u/g,pH值7.0,在此条件下,变性豆粕中蛋白质可有90.71%水解溶出。 相似文献
15.
16.
牡蛎蛋白的纯化及酶解条件的研究 总被引:8,自引:0,他引:8
本文利用(NH4)2SO4分级沉淀,透析脱盐,DEAE52纤维素柱层析对牡蛎蛋白质进行分离纯化,通过SDS凝胶电泳可知,55%饱和度的(NH4)2SO4沉淀可获得以牡蛎特征蛋白为主的纯化蛋白,其分子量约为55kD.在酶解实验分别采用胃蛋白酶、胰蛋白酶来进行,考察不同条件对水解度的影响.结果是胃蛋白酶酶解的最适酶用量为3%,pH2,温度40℃,水解时间5h,料水比为1:4;而胰蛋白酶的最适酶用量为2%,pH8,温度45℃,水解时间6h,料水比为1:3. 相似文献
17.
18.
动物蛋白酶解研究(Ⅰ) 总被引:17,自引:3,他引:14
本文主要目的是以美拉德(Maillard)反应产物(MRPs)的风味为判断依据,以水解度(DH)为动物蛋白酶解液-Maillard反应底物之一的特征性指标,根据MRPs的风味确定动物蛋白水解液的最佳DH或DH范围。 相似文献