首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
低合金钢中镍的溶样方法改进   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微波消解技术消解低合金钢样品,考察了微波消解时酸的种类以及微波消解时间、功率和压力对消解效果的影响,选择了最佳工作参数。利用萃取法分离,消除了铜、铁、锰离子的干扰,用分光光度法测定低合金钢中镍含量。常规溶样方法测定结果的相对误差小于5.0%,相对标准偏差小于4.7%;而微波消解方法的相对误差小于3.1%,相对标准偏差小于4.0%。实验结果表明,该法准确、省时、样品损失少、污染少,是目前较为理想的样品处理方法。  相似文献   

2.
微波消化技术在铁矿石分析中的应用研究   总被引:4,自引:1,他引:4       下载免费PDF全文
通过微波高压密封法对沉积物样品的消解,采用正交试验设计法系统地研究了微波消解中如试剂种类、压力控制和消解程序等影响因素,确定了最佳消解条件。用微波高压密封法对不同矿源和形态的铁矿石样品进行消解,方法快速、简单,测定结果准确度高,相对标准偏差小于0.15%。本法亦可用于其他矿石样品和环境样品的消解。  相似文献   

3.
提出了微波消解电感耦合等离子体原子发射光谱(ICP-AES)同时测定酸再生氧化铁粉中铝、硅、硫、钙、锰、硼、钛、镁、钾、钠、磷、铬、镍、铜等14种元素的分析方法。采用微波消解技术消解酸再生氧化铁粉,考察了微波消解时间、功率和压力对消解效果的影响,选择了最佳工作参数。通过ICP-AES仪器的FACT软件,选择合适的分析谱线,避免了基体干扰和元素之间的光谱干扰。同时对溶样条件、基体影响的机理等进行了探讨。微波消解方法测量结果的回收率及相对标准偏差(n=6)均优于常规溶样方法。对酸再生氧化铁粉样品的测定结果与传统湿法分析的结果相一致。  相似文献   

4.
选择酒石酸-氢氟酸-硝酸体系并利用微波消解处理样品,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钨和钛,建立了微波消解-电感耦合等离子体原子发射光谱法测定废脱硝催化剂中钨和钛的方法。试验考察了消解体系及用量,优化了微波消解程序。结果表明,钨和钛的质量浓度分别为0.05~5mg/L和0.01~10mg/L与其相应的发射强度呈线性关系,相关系数分别为0.9995、0.9998,检出限分别为0.002%、0.0002%。废脱硝催化剂中铁、铝、钙、镁、钒和钼等元素对钨和钛的测定无影响。方法用于废脱硝催化剂样品中钨和钛的测定,结果的相对标准偏差(RSD,n=6)均小于3%,并与原子吸收光谱法(AAS)测定值一致。  相似文献   

5.
在聚四氟乙烯内衬压力消解罐中,180 ℃的温度下,采用王水消解烘干的废钯炭催化剂样品,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定废钯炭催化剂中钯的方法。考察溶样方法、消解时间、消解温度和干扰离子对测定的影响。结果表明:废钯炭催化剂先做烘干处理,在180 ℃温度下消解6 h,效果最佳;废钯炭催化剂中存在的Si、Al、Fe、Mg、Ca等元素对钯的测定无影响;钯浓度在0~250 mg/L范围内与强度呈线性关系,加标回收率为99.6%~100.5%,相对标准偏差小于1%。用实验方法与原子吸收光谱法测定同一个废钯炭催化剂样品,两者测定结果基本相符,方法适合废钯炭催化剂中钯的测定。  相似文献   

6.
研究了用微波消解样品,氯磺酚偶氮硫代若丹宁(HSCT)分光光度法测定催化剂中铂的方法。在盐酸介质中,HSCT与铂反应生成2∶1稳定络合物,λmax=540nm,ε=6.15×104。在25mL溶液中,铂质量在0~50μg内符合比尔定律,催化剂样品经微波消解后用分光光度法测定,结果令人满意。  相似文献   

7.
采用盐酸和硝酸并利用微波消解法完全消解难溶高碳合金钢,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中的主要合金元素含量。试验对消解方法、消解试剂的选择及用量、水用量对高硅样品消解的影响、微波消解程序等进行了探讨。最终确立了最佳消解条件为:称取0.2g样品,依次加入10.0mL水、5.0mL盐酸、5.0mL硝酸,在目标温度达到180℃条件下进行微波消解处理。而对于硅质量分数在1.0%以上的高硅难溶高碳合金钢样品,应适当增加水用量。按照实验方法处理多个难溶高碳合金钢样品,并采用ICP-AES测定其中的主要合金元素Si、Mn、Ni、Cr、Mo、V,结果的相对标准偏差(RSD,n=8)为0.23%~4.7%;按照实验方法处理4个难溶高碳合金钢标准样品,并使用ICP-AES测定Si、Mn、Ni、Cr、Mo、V,测定结果与认定值相吻合。  相似文献   

8.
邻氨基苯基亚甲基若丹宁分光光度法测定铂的研究   总被引:3,自引:0,他引:3  
研究了用微波消解样品,邻氨基苯基亚甲基若丹宁(ABR)分光光度法测定铂的方法。在盐酸介质中,ABR与铂反应生成2∶1稳定络合物,体系λmax=525nm,ε=7.71×104L/(mol.cm),铂的质量浓度在0~50μg/25m l内符合比尔定律。氰化尾渣和催化剂样品中的铂用微波消解后采用该方法测定,结果令人满意  相似文献   

9.
微波消解-分光光度法测定钨矿中钨   总被引:2,自引:0,他引:2       下载免费PDF全文
冯忠伟 《冶金分析》2009,29(10):73-75
研究了利用微波消解技术对钨矿石样品进行消解,并采用硫氰酸盐分光光度法测定钨矿石中钨的含量。微波消解溶剂为40 mL NaOH溶液(25 g/L),微波火力为中高火,微波消解时间30 min。对各试剂用量进行了探讨,方法检出限为0.5μg/mL。对钨矿石样品进行分析,测定结果与传统溶样方法的结果相吻合,相对标准偏差小于2.3%。  相似文献   

10.
利用微波消解技术对锰矿石进行预处理,随后采用电感耦合等离子体原子发射光谱测定其二氧化硅含量。微波消解条件为:以浓硝酸、浓盐酸为消解液,消解压力5.0 MPa,消解时间15 min,在分析谱线251.61 nm处测定微波消解后样品的锰含量。三种样品测定结果与国标方法结果较为一致,具有简便、快速、准确等优点,从而可用于相关产业生产控制分析。  相似文献   

11.
废铑氧化铝催化剂中含有大量铑元素,回收催化剂中铑元素可以降低生产成本,因此准确测定废铑氧化铝催化剂中铑元素含量至关重要。然而废铑氧化铝催化剂组成复杂,常规湿法消解和微波消解方法无法完全溶解样品。实验采用0.1g废铑氧化铝催化剂和3.0g硫酸氢钾在650℃下熔融4h,熔融物使用10mL 10%(体积分数)硫酸加热溶解,然后使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铑,建立了熔融-电感耦合等离子体原子发射光谱法测定废铑氧化铝催化剂中铑的方法。ICP-AES工作条件为射频(RF)功率1.20kW、雾化气流量0.85L/min。校准曲线的线性相关系数R2=0.9999;方法检出限为0.01mg/L,测定下限为0.1mg/L。按照实验方法测定两个废铑氧化铝催化剂中铑,测定结果的相对标准偏差(RSD,n=9)为0.52%~0.56%;加标回收率为99.6%~100.3%。实验方法用于测定两个废铑氧化铝催化剂模拟样品中铑,测定值和理论值相一致。  相似文献   

12.
磺基水杨酸光度法测定铁是比较经典的方法,但对于磷矿石,采用敞口聚四氟乙烯烧杯在电热板上溶矿过程中溶液易喷溅,且显色时在pH 8~11溶液中,PO_4~(3-)会跟磷矿石中的Ca~(2+)、Mg~(2+)反应生成沉淀而影响铁的测定,同时含锰高的磷矿石中的Mn~(2+)也会对铁的测定产生干扰。因此实验在HNO_3-HF-SSA(磺基水杨酸)混合酸里采用密闭高压微波消解技术快速消解各种磷矿石,并通过磺基水杨酸光度法在六次甲基四胺介质中测定磷矿石中铁(以Fe_2O_3形式表示)。考察确定了微波消解条件(功率400 W、压力0.5 MPa、消解时间10min)和混合酸的最佳用量(2mL HNO_3-5mL HF-2mL 200g/L SSA溶液),并对磷矿石国家标准物质和实际样品分析,结果表明,实验方法与国家标准方法(GB/T 1871.2—1995)以及电感耦合等离子体原子发射光谱法(ICP-AES)测定结果一致,测定值与认定值一致,相对标准偏差(RSD,n=5)在2%以内,可满足磷矿石中0.05%~10%三氧化二铁的测定要求。  相似文献   

13.
以硅酸盐样品为对象开展硅酸盐样品的微波消解技术研究,并采用氟硅酸钾法测定其中的SiO2含量。微波消解溶剂为HNO3和HF混合酸,其加入量分别为5 mL和2 mL,消解压力为1.0 MPa和2.0 MPa,消解时间分别为1 min和4 min,共计5 min,远小于常规高温熔融分解的时间。砂岩、粘土、高岭土、长石等4种硅酸盐标准物质SiO2含量测定结果与认定值相符,且相对标准偏差(RSD)分别为0.12%,0.22%,0.13%,0.12%;5种实际样品的测定结果也与传统方法一致,可用于硅酸盐样品SiO2含  相似文献   

14.
选取5 mL王水为溶剂,采用微波消解法处理锌精矿样品,以205Tl作为测定同位素,建立了电感耦合等离子体质谱法(ICP-MS)测定锌精矿中痕量Tl的定量分析方法。优化后的微波消解程序如下:消解温度为190 ℃,升温时间为20 min,消解保持时间为20 min。采用直接稀释法消除基体效应,控制测试液中固体质量浓度不大于0.5 mg/mL。实验表明,Tl质量浓度在0.10~50.00 μg/L范围内与其对应的峰强度呈良好的线性关系,校准曲线相关系数为0.999 9。方法检出限为0.001 8 μg/L,方法测定下限为0.006 μg/L。对锌精矿实际样品中的痕量Tl进行分析,测定结果与国家标准方法中泡塑富集-电感耦合等离子体原子发射光谱法(ICP-AES)测定值基本一致,相对标准偏差(RSD,n=11)均小于5%。  相似文献   

15.
采用高压消解技术,使用3.0mL HCl、2.0mL HNO3和4.0mL HF对茂金属催化剂进行了处理后制备样品溶液,选择Ti 334.940nm、Zr 343.823nm、Al 396.153nm、Ca 317.933nm作分析线,建立了压力消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定茂金属催化剂中Ti、Zr、Al、Ca的方法。溶液中Al元素含量偏高,对Ti、Zr、Ca的测定有显著的影响,实验选择In和Cs做内标元素可消除基体干扰。对于样品中高含量的Al,需稀释后进行测定;而Ti、Zr、Ca可通过在线加入In内标溶液的方式直接测定。各元素校准曲线线性相关系数均不小于0.9998。对一个茂金属催化剂样品进行精密度考察,各元素测定结果的相对标准偏差(RSD,n=6)均不大于1.7%;按照实验方法测定茂金属催化剂样品,并与微波消解处理样品后的ICP-AES法进行比对分析,结果基本一致。  相似文献   

16.
通过在电解金属锰渣中加入助剂,采取高温煅烧和微波消解的方法活化SiO2,利用正交试验和单因素试验研究得出了电解金属锰渣中有效硅活化的最佳质量配比为电解金属锰渣∶CaCO3∶Na2CO3∶ NaOH=1.00∶ 0.60∶ 0.15∶0.10,在此比例下经400℃高温煅烧,其有效硅含量达到6.94%,用微波消解其有效硅含量达8.08%,同时水溶性锰含量达1.51%,枸溶性锰含量达5.01%.经活化后的电解金属锰渣可作为硅锰肥,为植物提供必要的生长元素.  相似文献   

17.
用微波消解技术,以混合酸(盐酸-硝酸-硫酸-双氧水)消解磷酸铁锂样品,建立了电感耦合等离子体质谱法(ICP-MS)测定磷酸铁锂中钠、镁、铝、钙、钛、铬、锰、钴、镍、铜、锌、铅等12种微量杂质元素的分析方法。确定了最佳实验条件如下:采用普通模式测定元素铅,氦碰撞模式测定钠、镁、铝、钛、铬、锰、钴、镍、铜、锌,氢气反应模式测定钙;碰撞气He气流速为5.6 mL/min,反应气H2的流速为6.2 mL/min;钠、镁、铝、钙、钛采用钪为内标进行基体校正,铬、锰、钴、镍、铜、锌采用铱进行校正,铅采用铋进行校正。方法检出限在4.5~28.9 ng/L之间。采用实验方法对磷酸铁锂实际样品中各元素进行测定,结果的相对标准偏差(RSD,n=11)在0.6%~1.9%之间,加标回收率为94%~107%。方法测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比分析,结果基本一致。  相似文献   

18.
采用王水和氟化铵在微波消解仪中消解样品,建立了火焰原子吸收光谱法测定铅烟灰和铅泥中银的方法。考察了溶样方法、消解试剂、微波消解程序、盐酸浓度和干扰离子对测定的影响。结果表明,以王水和氟化铵为消解试剂,采用三步消解程序即60℃、8 atm/1 min, 70℃、13 atm/2 min, 100 ℃、20 atm/3 min,效果最佳;铅泥和铅烟灰中的铜对银的测定没有影响;银浓度在0.2~10 μg/mL范围内与吸光度呈线性关系,方法检出限为0.03 μg/mL。采用本方法对铅烟灰和铅泥样品中的银进行分析,测得结果与常规溶样-原子吸收光谱法基本吻合,相对标准偏差(RSD,n=5)为1.1%~1.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号