首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Pd nanoparticles were fabricated on graphene oxide (GO) using a deposition-precipitation method with a glow discharge plasma reduction at room temperature. Argon was employed as the plasma-generating gas. The novel plasma method selectively reduces the metal ions. The graphene oxide has no change with this plasma reduction according to the Fourier transform infrared analysis. The Pd nanoparticles on the GO were uniformly distributed with an average diameter of 1.6 nm. The functional groups on the GO not only prevent Pd nanoparticles from further aggregation but also provide a strong hydrophilic property to the Pd/GO composite, which can form stable colloidal dispersions in water.  相似文献   

2.
A simple and environmentally friendly approach for the preparation of graphene nanosheets decorated with silver nanoparticles (Ag NPs) has been developed by gamma irradiation at room temperature. Graphene oxide (GO) and silver ions are simultaneously reduced by the electrons generated from the radiolysis of solvent. The addition of ionic liquid plays an important role in GO reduction by scavenging oxidative radicals generated during irradiation. Besides, the ionic liquid also benefits the dispersion and size distribution of Ag NPs. Raman signals of the obtained Ag-reduced graphene oxide are significantly enhanced, exhibiting obvious surface-enhanced Raman scattering activity.  相似文献   

3.
A green approach for the reduction of graphene oxide (GO) using wild carrot root is reported in this work. It avoids the use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain graphene. The endophytic microorganisms present in the carrot root, reduces exfoliated GO to graphene at room temperature in an aqueous medium. Transmission electron microscopy and atomic force microscopy images provide clear evidence for the formation of few layer graphene. Characterization of the resulting carrot reduced GO by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy shows partial reduction of GO to graphene. Raman spectroscopy data also indicates the partial removal of oxygen-containing functional groups from the surface of GO and formation of graphene with defects.  相似文献   

4.
Due to fascinating electronic properties and great potential in various applications, graphene has attracted great interest. Recently, much work have focused on the synthesis of different sizes and properties of graphene or graphene oxides (GOs), for example, graphene nanoribbons, nanosized graphene pieces, and nanosized triangular and hexagonal graphene sheets terminated by zigzag edges. Herein, we have demonstrated a widely available approach to fabricate the nanoscale GO pieces by directly solution-phase cutting a large-area GO sheet into nanoscale pieces via spontaneous redox reactions at room temperature. In this process, GO acts with dual functions as a model and a reducing reagent. With a typical example of silver ions, we have investigated in detail the influence of the reaction time and concentration of metal ions on yield and size of nanoscale GO pieces. Moreover, we also obtain Ag nanoparticle coating on the GO surface. Finally, a possible mechanism is suggested to explain the formation of nanoscale GO pieces.  相似文献   

5.
Xiang G  He J  Li T  Zhuang J  Wang X 《Nanoscale》2011,3(9):3737-3742
We present the facile preparation results of noble metal nanostructures induced by graphene via rapid coreduction by Ti(3+) at room temperature. Such a reduction of graphene oxide (GO) can be readily performed in solutions or on various substrates within seconds. High quality noble metal nanocrystals can be prepared by using graphene as the controlling agent at room temperature, including Rh, Au and Rh-Pt nanodendrites and Pd nanoparticles, showing the roles of graphene on tuning the growth behaviors of nanostructures. These surface clean Pd nanoparticles show high catalytic activity and selectivity in Suzuki and Heck coupling reactions.  相似文献   

6.
Zhang B  Zhang Y  Peng C  Yu M  Li L  Deng B  Hu P  Fan C  Li J  Huang Q 《Nanoscale》2012,4(5):1742-1748
Herein, we report a facile approach to decorate graphene oxide (GO) sheets with poly(vinyl acetate) (PVAc) by γ-ray irradiation-induced graft polymerization. The content of PVAc in the obtained sample, i.e., PVAc grafted GO (GO-g-PVAc) is calculated by the loss weight in thermogravimetric analysis (TGA) curves. A GO-g-PVAc sample with a degree of grafting (DG) of 28.5% was well dispersed in common organic solvents and the dispersions obtained were extremely stable at room temperature without any aggregation, even after standing for 2 months. The excellent dispersibility and stability of GO-g-PVAc in common organic solvents are readily rationalized in terms of the full coverage of PVAc chains and solvated layer formation on graphene oxide sheets surface, which weakens the interlaminar attraction of GO sheets. This approach presents a facile route for the preparation of dispersible GO and shows great potential in the preparation of graphene-based composites by solution-processes.  相似文献   

7.
A self-reduction of graphene oxide (GO) at room temperature after prolonged storage on a copper substrate is evidenced by decrease of oxygen content and a dramatic, 6 orders in magnitude, increase in dc conductivity. Experiments revealed that the stored GO film contains copper hydroxide phase embedded in the reduced GO structure.  相似文献   

8.
Reduction of graphene oxide (GO) was carried out on SiO2 using a thin Ni overlayer as a catalyst. A Ni/GO/SiO2 structure was heated at 800 °C in high vacuum for 6 min. After removing the Ni overlayer, formation of graphene was confirmed by Raman spectroscopy. For the Ni overlayer thinner than 40 nm, GO was reduced to graphene on-site. For the thicker Ni overlayer, however, GO was completely decomposed and graphene was formed in a segregation and/or precipitation process. The use of GO with a thin Ni overlayer enabled on-site and transfer-free fabrication of graphene without use of such flammable gases as methane and hydrogen.  相似文献   

9.
We report a simple approach to reduce graphene oxide (GO) solution by pulsed laser irradiation. The reduction was rapidly carried out at room temperature in only 5 min. The reduced graphene oxide (r-GO) was characterized with UV–visible spectroscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, thermo-gravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and atomic force microscopy. Based on this reducing method, an r-GO conductive film with a sheet resistance of 53.8 kΩ/sq was obtained. The pulsed laser reduction of GO in solution creates a new way to produce graphene composites for a variety of applications.  相似文献   

10.
Chen W  Zhu Z  Li S  Chen C  Yan L 《Nanoscale》2012,4(6):2124-2129
A novel method has been developed to prepare hydrogenated graphene (HG) via a direct synchronized reduction and hydrogenation of graphene oxide (GO) in an aqueous suspension under (60)Co gamma ray irradiation at room temperature. GO can be reduced by the aqueous electrons (e(aq)(-)) while the hydrogenation takes place due to the hydrogen radicals formed in situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be 5.27 wt% with H/C = 0.76. The yield of the target product is on the gram scale. The as-prepared HHG also shows high performance as an anode material for lithium ion batteries.  相似文献   

11.
Rapid and mild thermal reduction of graphene oxide (GO) to graphene was achieved with the assistance of microwaves in a mixed solution of N,N-dimethylacetamide and water (DMAc/H2O). The mixed solution works as both a solvent for the produced graphene and a medium to control the temperature of the reactive system up to 165 °C. Fourier transform infrared spectrometry, X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis confirmed the formation of graphene under this mild thermal reduction condition. The reduction time is found to be in the scale of minutes. The as-prepared graphene can be well dispersed in DMAc to form an organic suspension, and the suspension is stable for months at room temperature. The conductivity of graphene paper prepared by the microwave reduced product is about 104 times than that of GO paper.  相似文献   

12.
《Ceramics International》2022,48(4):4821-4828
We have successfully synthesized multi-layer graphene oxide and graphene oxide based magnetic nanocomposite (M/GO) by microwave-assisted modified Hummers’ method for removal of toxic lead (Pb2+) and cadmium (Cd2+) ions from aqueous solution. The X-ray diffraction spectra of synthesized graphene oxide and M/GO confirm increased interlayer spacing along c-axis. Raman spectra revealed the good quality of synthesized GO and M/GO. The wrinkles were seen in the SEM images of synthesized graphene oxide. The presence of conjugated double bond (CC) and carbonyl (CO) were confirmed by using the UV–Vis spectroscopic spectra. Brunauer–Emmett–Teller (BET) analysis showed high (126 m2/g) surface area M/GO composite which accounts for large number of active binding sites for the adsorption of heavy metal ions. The adsorption studies revealed that Pb2+ ions were efficiently adsorbed on GO sheets. Interestingly, M/GO showed better adsorption for cadmium ions.  相似文献   

13.
A green and efficient approach for the synthesis of graphene decorated with silver nanoparticles is demonstrated by simultaneously reducing both graphene oxide (GO) sheets and silver ions with glucose as the reducing agent and poly(N-vinyl-2-pyrrolidone) (PVP) as the surface modifier. Different silver-containing materials are obtained by changing the synthesis temperature. The oxygen-containing groups of the substrate influence its decoration with the in situ formed silver nanoparticles. The combination of glucose and a silver–ammonia solution, as well as maintaining a good dispersion of GO by using PVP are crucial for the decoration of graphene with silver nanoparticles. The materials exhibit a distinct surface-enhanced Raman scattering effect.  相似文献   

14.
A high yield of graphene oxide (GO) was chemically synthesized from graphite powder utilizing adjusted Hummer's method. The contents of acidic functional groups in GO were determined using potentiometric titration. Composite hydrogels dependent on graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid)/polyvinyl alcohol (GO/PAMPS/PVA) were synthesized utilizing a 60Co gamma irradiation source at different doses. The synthesized graphene oxide and composite hydrogels were portrayed via X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared analysis. The morphology of composite hydrogels was characterized by scanning electron microscope. The gel % and swelling % for the prepared hydrogel demonstrated that the swelling % of hydrogel increased with raising AMPS content. Whereas the increment of GO and increasing the irradiation dose lead to a reduction in the swelling %. The influences of pH, GO percentage, initial dye concentration, the adsorbent dosage, contact time, and temperature on the adsorption of basic blue 3 dye were evaluated and the adsorption capacity was 194.6 mg/g at optimum conditions; pH = 6, GO/PAMPS/PVA composite hydrogels with 5 wt% of GO, initial dye concentration = 200 mg/L, adsorbent dose = 0.1 g, solution volume = 50 mL after 360 min at room temperature (25°C). The adsorption of dye onto the GO/PAMPS/PVA composite hydrogels follows Pseudo-second-order adsorption kinetics, fits the Freundlich adsorption isotherm model.  相似文献   

15.
《Ceramics International》2015,41(8):9505-9513
A simple and efficient method was introduced for the high-conversion preparation of graphene oxide (GO) from large graphite flakes (average flake size=100 μm) using a simplified Hummer׳s method. Natural reducing agents such as lemon juice and vinegar were compared with hydrazine (N2H4) as potential reducing agents. Graphene was prepared by chemical reduction of GO because this method was low cost and could be used for large-scale graphene production. This one-pot graphene preparation was performed at room temperature. Different degrees of oxidation of graphite flakes were obtained by stirring graphite in a mixture of sulfuric acid and potassium permanganate at different oxidation times, and highly exfoliated GO sheets were produced. GO was subsequently reduced effectively by lemon juice, a new, green, and potential reducing agent with pH 2.3. This reduced GO exhibited a high electrical conductance of 24.6 μS attributed to its higher C/O ratio (≈8:2) compared with other samples.  相似文献   

16.
乔伟强  刘丹 《广州化工》2011,(24):90-93
采用了一种简单有效地方法制备了高电活性的石墨烯/聚苯胺复合材料。首先,将苯胺在氧化石墨烯(GO)的水性分散液中氧化聚合,制备了氧化石墨烯/聚苯胺(GO/PANI),再将GO/PANI与水合肼反应,制得还原-氧化石墨烯/聚苯胺(R(GO/PANI))。利用透射电子显微镜(TEM),热失重分析(TGA)和循环伏安法(CV)对GO/PANI和R(GO/PANI的形貌,热稳定性和电化学性能进行了分析研究。结果表明,GO表面存PANI,且R(GO/PANI)的热稳定性和电活性都明显高于GO/PANI。  相似文献   

17.
An electrostatic self-assembly procedure was used to fabricate graphene oxide (GO) and gold nanorod (AuNR) hybrids (GO–AuNR), in which poly (N-vinyl-2-pyrrolidone) was used as a stabilizing surfactant to prevent the aggregations of GO sheets. AuNRs were loaded onto the surface of GO, which was confirmed by zeta potential measurements, transmission electron microscopy, atomic force microscopy, UV–Vis–NIR and Raman spectroscopy. The GO–AuNR materials show a great increase of Raman signals for adsorbed aromatic dye molecules, which was demonstrated using cationic and anionic aromatic dyes as probe molecules.  相似文献   

18.
An in situ strategy for fabrication of reduced graphene oxide/fused silica (rGO/FS) composites using 3-aminopropyltriethoxysilane as surfactant is reported. GO nanosheets were bound to FS particles by an electrostatic assembly between ultra thin negatively charged GO sheets and positively charged amino-modified FS particles. After spark plasma sintering, rGO/FS bulk composites have been produced from the GO and FS composite particles with GO being reduced to rGO in vacuum at high temperatures. Results show that rGO sheets were well dispersed in the matrix, and conductivity of these rGO/FS composites at room temperature was strongly dependent on the rGO nanosheet concentration. i.e., the conductivity of rGO/FS was increased to 10−4 S/cm when a conducting network was formed inside the composites. The effect of GO nanosheets on the mechanical properties of rGO/FS bulk composites was also investigated. The addition of 1 wt.% GO sheets to FS resulted in 72% increase in Vickers hardness, indicating the stress transfering from the FS matrix to the rigid rGO sheets. With the same rGO content, the fracture toughness of the as-prepared composites was increased by 74%. The main toughening mechanisms were thought to be crack deflection, crack branching, pulling-out and bridging of the rGO sheets.  相似文献   

19.
《Ceramics International》2022,48(3):3711-3719
With the miniaturization and integration of electronic devices heat conduction becomes a serious problem. Graphene films catch research's attention because of its excellent thermal performance and graphene oxide (GO) has been used as the most common precursor to prepare graphene films. But mostly film fabricated from GO is thinner than 30 μm and much thicker films are required to meet certain requirements. Also taking GO as raw material has many disadvantages such as the introduction of massive concentrated sulfuric acid and metal ions, huge weight loss in heat treatment and so on. Herein, we propose a new strategy to prepare graphene nanosheet films (GNFs) with a thickness of 100 μm by vacuum filtration of expand graphite through weak oxidation (WEG). Unlike common strategy, WEG without any metal ions introduced instead of GO is chosen as our raw material. The addition of nonionic surfactant and the employment of microfluidization can stabilize WEG dispersion. After graphitization at 2800 °C WEGF is transferred to GNF. The obtained 100 μm-thick film possesses a decent in-plane thermal conductivity (TC) of 760 W/mk and electrical conductivity (EC) of 5.2×105 S/m. Thick films with high TC can guarantee passing more heat flux and fill in larger gaps inside devices.  相似文献   

20.
Mao S  Yu K  Cui S  Bo Z  Lu G  Chen J 《Nanoscale》2011,3(7):2849-2853
We report on a novel, efficient, and one-step approach to prepare single-layer reduced graphene oxide (RGO) suspensions and films using hydroxylamine hydrochloride. The effective chemical reduction of GO was evidenced by a significant increase in the C/O ratio and five orders of magnitude decrease in the GO resistance. Field-effect transistor gas sensors were fabricated using as-produced RGO sheets and the resulting sensor exhibited a fast response and a high sensitivity to low-concentration target gases at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号