首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
潘宜昌  邢卫红 《化工进展》2020,39(6):2036-2048
同碳数烯烃/烷烃的分离是目前石油化工行业中最耗能的过程之一,开发新型的、低能耗的丙烯/丙烷分离过程被认为是改变世界的七项化工分离技术之一。气体膜分离技术因其高效、节能和环境友好等优点被认为是一种可取代传统低温精馏分离丙烯/丙烷混合气体的新型技术。金属有机骨架材料ZIF-8的有效孔径介于丙烯和丙烷的分子动力学直径之间,可对丙烯/丙烷实现高效分离,是目前分离丙烯/丙烷性能最好的膜材料。本文系统总结了ZIF-8膜的制备方法及用于丙烯/丙烷高效分离的发展历程;探讨了ZIF-8膜微结构的调控,尤其是膜缺陷的修复及ZIF-8骨架柔性的控制;总结了ZIF-8膜在分离丙烯/丙烷时,过程参数对于分离性能的影响规律;并提出ZIF-8膜规模化制备及潜在工业分离丙烯/丙烷研究中存在的问题和未来发展方向。  相似文献   

2.
In this study, permeation of carbon dioxide (CO2) and methane (CH4) through the polycarbonate/polyethylene glycol (PC/PEG) blend membrane was investigated. The effect of PEG content (0–5 wt%) on the permeability and selectivity was studied. Permeability measurements were carried out at pressures of 1–7 bar and at room temperature. The membranes were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and density measurement. The results revealed that the PC/PEG blends are miscible/partially miscible without considerable micro-phase separation. The effect of PEG content and gas pressure on the diffusion and solubility of coefficients were also investigated and analyzed. It was concluded that the most influential parameter for the permeation is the diffusion coefficient of the gases. The permeability and selectivity decrease as the operating pressure and PEG content are increased. Furthermore, the results showed that the addition of 5 wt% of PEG into PC increases the CO2/CH4 selectivity from 26.6 ± 0.99 to 40.9 ± 2.14 (more than 53%) at 1 bar.  相似文献   

3.
赵祯霞  许锋  李忠 《化工学报》2014,65(5):1673-1679
采用二次生长法在α-Al2O3载体上制备超薄型ZIF-8膜,研究了多种轻分子气体以及混合气体CO2/N2的渗透分离性能。通过SEM和XRD表征了ZIF-8晶种层的晶种涂布状态,以及ZIF-8晶体膜的生长覆盖度和晶膜厚度。研究结果表明:采用低浓度的晶种悬浮液通过浸润式连续多次涂布法,有利于获得晶种层厚度均匀且覆盖度高的超薄均匀ZIF-8晶种层,经过二次生长后所得ZIF-8膜的覆盖度高、厚度均匀且较薄,仅约为8.8 μm;在所测试范围内的CO2/N2混合气体中,此ZIF-8膜对CO2具有优先选择透过性,其对CO2/N2的渗透分离因子随温度的升高而降低,随渗透压力的增加而增加,在298 K、406 kPa和CO2组分含量为50%时,该分离因子能达到6,显著超过Knudsen扩散的分离系数。  相似文献   

4.
自聚微孔聚合物(PIM-1)虽具有良好的CO2渗透性能,但其气体选择性普遍较差,限制其在CO2/CH4分离领域的应用。本文以N,N-二甲基甲酰胺(DMF)为溶剂制备ZIF-8纳米粒子,将其引入到羧基化的PIM-1基质中,制备了cPIM-1/ZIF-8混合基质膜,用于CO2/CH4分离。结果表明:由于合成ZIF-8的溶剂也是cPIM-1的良溶剂,使得两者之间具有良好的界面相容性,从而使ZIF-8添加量高达质量分数45%。随着ZIF-8添加量的增加,膜的CO2渗透速率持续增加,CO2/CH4选择性呈现先上升后下降的趋势。当ZIF-8添加量为质量分数25%时,膜的CO2/CH4分离性能最好,即CO2渗透系数为3942 Barrer,CO2/CH4选择性为18.7,较cPIM-1纯膜分别提高了 84%和43%,成功地超越了Robeson分离上限。  相似文献   

5.
高逸飞  易群  齐凯  高丽丽  李雪莲 《化工进展》2022,41(12):6395-6407
氢气的生产、分离和储存已经成为世界绿色能源经济的重要组成部分。通过膜分离法从工业副产物中提纯氢气,不但操作简便,且显著降低了分离的能耗,是一种有前景的分离技术。金属有机框架(metal-organic frameworks,MOFs)因具有晶态、有序、明确的多孔结构和较大的比表面积,被认为是理想的气体分离膜材料。本文以MOFs基分离膜为研究对象,对比综述了MOFs膜的常规制备技术,总结了水热/溶剂热法、界面合成法、二次生长法和浇铸法的合成机理及应用。简述了在H2/CH4分离方面MOFs膜的设计原理及应用。针对MOFs膜当前存在的柔性、孔径、晶界结构、稳定性等问题,重点介绍了对制备方法与改良和对薄膜的后修饰策略,以期实现对MOFs膜性能的调控。最后,指出了目前该技术存在的难以大规模生产、分离性能不足的缺点,开发低成本的大规模生产方法同时提高薄膜的分离性能将会是未来MOFs膜实现工业应用的关键。  相似文献   

6.
ABSTRACT

SAPO-34 molecular sieves have a high adsorption capacity in separation of CO2 from CO2/CH4 mixture. In this study, SAPO-34 was modified by different solutions at various operating conditions to enhance the removal of carbon dioxide from the methane gas. Modifications can change pore size and also Si/Al ratio in SAPO-34 and make changes in the acidity of the adsorbent via the ion exchange process. The effects of temperature and pressure on the separation were studied using the design of experiments. Finally, based on the results of the experimental optimization process applying central composite design (CCD) method, the highest yield of CO2 separation from the methane gas (95%) was obtained when using P-SAPO-34 sample at 17.4°C and 4.6 bar.  相似文献   

7.
Development of materials with excellent separation performances remains an ongoing challenge in methane/nitrogen (CH4/N2) separation science. Herein, a facile and effective method for enhancing CH4 uptake, binding, and CH4/N2 selectivity using the surface-carbonized and stiffened zeolitic imidazolate framework-8 (CSZ) via high-vacuum-resistance calcination (HVRC) was demonstrated. Such vacuum-treated CSZ nanoparticles, with carbonized structures that contain Zn-rich sites, high stability, and satisfactory compatibility with polymers, were then uniformly mixed with the strong basic polymer polyvinylamine (PVAm) to obtain large-area mixed-matrix membranes (1120 cm2, which is ca. 2 pieces of A4-size paper). Owing to the presence of Zn-rich sites and amino groups, CH4 molecules were bound more readily to CSZ and PVAm than N2, as confirmed by gas adsorption isotherms and DFT calculations. The obtained MMM modules (ca. 2000 cm2) exhibited outstanding CH4 separation performances at 85 wt% CSZ loading, achieving a CH4 permeance of 7600 GPU and CH4/N2 selectivity of 4.35.  相似文献   

8.
潘勇  张喆  童雄师  李海  刘蓓  孙长宇  陈光进 《化工学报》2015,66(8):3130-3136
为了有效地捕集焦炉气及煤层气中的甲烷,提出了一种新型捕集技术:吸收-吸附组合方法,该方法通过把ZIF-8分散到乙二醇水溶液中形成悬浮浆液,实现对甲烷组分的捕集。首先测定了甲烷、氮气和氢气在浆液中的吸收-吸附容量,得出吸着量大小的顺序为CH4> N2> H2,然后对CH4/H2和CH4/N2的混合气进行吸着平衡研究,发现浆液均能有选择性地吸着甲烷。对浆液中回收的ZIF-8材料进行XRD表征,分析证明在整个吸着过程中ZIF-8结构没有发生变化并且ZIF-8/乙二醇-水浆液能重复利用。  相似文献   

9.
Mixed matrix membranes (MMMs), which combine the good separation performance of inorganic materials with the low cost of polymers, have emerged as a research hotspot for gas separation membranes. Zeolite imidazolate frameworks (ZIFs) are widely used as fillers to prepare MMMs owing to their advantageous characteristics, such as adjustable pore channels, unsaturated sites, and easy functionalization. For MMMs, three directions can be employed as criteria for improvement compared with pristine polymeric membranes. In this article, the progress of ZIF-based MMMs is reviewed from the aspects of sole-ZIF-based MMMs and modified ZIF-based MMMs. Both strategies improve the separation performance through different improvement directions and mechanisms. Our analysis shows that the synergistic effect of the modified filler can change the structure of the membranes, such as by improving the filler–polymer interface voids, which provides a foundation to overcome the trade-off effect to a certain extent. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48968.  相似文献   

10.
Zeolitie imidazolate framework-8(ZIF-8),composed of Zn ions and imidazolate ligands,is a class of metal-organic frameworks,which possesses a similar structure as conventional aluminosilicate zeolites.This material exhibits inherent porous property,high loading capacity,and pH-sensitive degradation,as well as excep-tional thermal and chemical stability.Extensive research effort has been devoted 10 relevant research aspects ranging from synthesis methods,property characterization to potential applications of ZIF-8.This review focuses on the recent development of ZIF-8 synthesis methods and its promising appications in drug delivery.The potential risks of using ZIF-8 for drug delivery are also summarized.  相似文献   

11.
Pressure swing adsorption experiments were carried out for the separation of equimolar mixtures of carbon dioxide and methane containing small amounts of hydrogen sulfide, utilizing 4A, 5A, and 13X molecular sieves. High-purity methane of zero or nearly zero hydrogen sulfide concentration was produced in the adsorption stage with 13X and 5A sieves, at high product recovery rates; high-purity carbon dioxide was obtained with the same sieves in the desorption stage. Zeolite 4A was found capable of raising considerably the hydrogen sulfide concentration in the accumulated desorption product (vs. the adsorption feed) at high recovery rates too. Adsorption selectivity values derived from the experimental results for all three gas pairs were in line with some theoretical predictions and experimental data of the literature.  相似文献   

12.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

13.
14.
Pt/CoAl2O4/Al2O3, Pt/CoOx/Al2O3, CoAl2O4/Al2O3 and CoOx/Al2O3 catalysts were studied for combination CO2 reforming and partial oxidation of CH4. The results indicate that Pt/CoAl2O4/Al2O3 is the most effective, and XRD results indicate that Pt species are well dispersed over the Pt/CoAl2O4/Al2O3. High dispersion is related to the presence of CoAl2O4, formed during calcining at high temperature before Pt addition. In the presence of Pt, CoAl2O4 in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity in the Pt/CoAl2O4/Al2O3 catalyst.  相似文献   

15.
The mixed matrix membranes (MMMs) consisting zeolitic-imidazolate framework-8 (ZIF-8) nanoparticles in a polymer have been of considerable interest in separation applications. The fillers used are mostly synthesized using the solvothermal method. In this study, the ZIF-8 nanoparticles were synthesized using a solvent-less and salt-free mechanochemical method and were added to 6FDA-TrMPD polyimide to prepare MMMs. The single gas permeation of C3H6 and C3H8 through the MMMs was investigated. The C3H6 permeability and C3H6/C3H8 ideal selectivity of a 20 wt% mechano-synthesized ZIF-8/6FDA-TrMPD MMM were 70% and 32% higher than those of the neat polymer membrane at 0.1 MPa and 308 K, respectively. The C3H6/C3H8 separation performance of the mechano-synthesized ZIF-8 MMM was similar to that of the conventional solvothermal-synthesized ZIF-8 MMM. This separation performance was in good agreement with the Maxwell model. Temperature and pressure dependence analyses confirmed that the mechano-synthesized ZIF-8 nanoparticles acted as molecular sieves in the MMMs for the C3H6 and C3H8 permeation.  相似文献   

16.
Effect of confinement and surface functionalization in carbon nanotubes (CNTs) on the competitive adsorption of a binary CO2/CH4 mixture has been investigated by grand canonical Monte Carlo simulations. Adsorption using CNTs with different functionalization arrangements, different diameters, different functionalization degrees, and different functional groups, such as –COOH, –CO, –OH, –CH3, is investigated. Effects of (a) the pore textural properties, such as pore size and accessible surface area, and (b) the gas–adsorbent interaction, especially the electrostatic interaction, are discussed. From these results, we discuss the impact that variables such as confinement and surface functionalization have on the performance for CO2 separation.  相似文献   

17.
Reduced NiO/MgO, with a NiO content in the range 9.2–28.6 wt%, was found to be a highly effective catalyst for the CO2 reforming of CH4 to CO and H2 (at 790°C, atmospheric pressure and a space velocity of 60000 cm3g–1h–1). For smaller or higher NiO contents, the yield was smaller, being negligible for 4.9 wt%. In contrast to the other reforming catalysts, the new catalyst has high stability, since in the optimum NiO range the CO yield remained unchanged at 95% for 120 h without any carbon deposition. The formation of a solid solution between NiO and MgO, which was demonstrated by both X-ray diffraction and temperature-programmed reduction, is most likely responsible for the high selectivity and stability in a large range of compositions of NiO/MgO.  相似文献   

18.
Preparation and characterization of novel polysulfone/zinc oxide (PSf/ZnO) mixed matrix membranes (MMMs) with different ZnO loadings for high selective CO2/CH4 separation were aimed in this study. Scanning electron microscopy photographs demonstrated that spongy and small tear like pores in plain PSf membrane (0 wt % of ZnO) replaced with large tear like pores close to surface layer by increasing ZnO content up to 0.1 and 1 wt %. In contrast, a dense and less free volume structure was obtained in membranes having 3 and 5 wt % of ZnO. Membrane porosity increased from 28.68 to 50.51% with increasing ZnO content from 0 to 1 wt %. Then, a reduction in porosity was observed for membranes containing 3 and 5 wt % of ZnO. Atomic force microscopy images presented variation in membrane surface roughness. Surface roughness decreased from 67.64 nm for plain PSf to 47.86 nm for membrane containing 1 wt % of ZnO. While, surface roughness increased and reached to 115.5 and 122.4 nm for MMMs having 3 and 5 wt % of ZnO. Gas separation properties of PSf/ZnO MMMs were examined and CO2/CH4 selectivity of MMMs containing 3 and 5 wt % of ZnO were 22.29 and 54.29, respectively, in 1 bar feed pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39745.  相似文献   

19.
为了获得经济节能的烟道气CO2回收方法,制备了一种新型的N2优先渗透ZIF-8复合膜。以柔性聚砜(PSf)多孔膜为支撑层,采用Zn2+与壳聚糖的交联溶液对聚砜支撑层表面改性,使Zn2+固定在PSf膜表面;然后与2-甲基咪唑(Hmim)配位得到ZIF-8晶种层;最后通过界面聚合法二次生长制得ZIF-8复合膜。采用FTIR、XRD及SEM对ZIF-8复合膜的形貌结构进行表征,结果显示成功制备了致密的ZIF-8复合膜。在进料气为纯气条件下,探究了二次生长时间、Zn2+溶液的浓度、测试时间及测试压力对ZIF-8复合膜N2/CO2分离性能的影响,阐明其N2优先渗透机理;并进一步考察了混合气分离性能。结果表明:在25℃和0.1 MPa下,最优ZIF-8复合膜的N2渗透性为523 GPU,N2/CO2选择性为19;同条件下混合气的N2渗透性和N2/CO2选择性分别为517 GPU和18。所制备的ZIF-8复合膜可以使N2优先渗透,实现烟道气中高浓度N2渗透,低浓度CO2截留在膜的上游侧。原因主要是ZIF-8复合膜含有较多的CO2强吸附位点,使CO2被吸附在膜内不易从膜的下游侧脱附,渗透性小,而N2优先渗透,这为N2优先渗透膜的制备提供了一种新思路。  相似文献   

20.
The reforming of CH4 with CO2 over supported Rh catalysts has been studied over a range of temperatures (550–1000 K). A significant effect of the support on the catalytic activity was observed, where the order was Rh/Al2O3>Rh/TiO2>Rh/SiO2. The catalytic activity of Rh/SiO2 was promoted markedly by physical mixing of Rh/SiO2 with metal oxides such as Al2O3, TiO2, and MgO, indicating a synergetic effect. The role of the metal oxides used as the support and the physical mixture may be ascribed to the promotion in dissociation of CO2 on the surface of Rh, since the CH4 + CO2 reaction is first order in the pressure of CO2, suggesting that CO2 dissociation is the rate-determining step. The possible model of the synergetic effect was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号