首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85–86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62–68% measured heat recovery efficiency, which is lower than specified.  相似文献   

2.
Rotary desiccant air conditioning system, which combines the technologies of desiccant dehumidification and evaporative cooling, is advantageous in being free from CFCs, using low grade thermal energy and controlling humidity and temperature separately. Compared with conventional vapor compression air conditioning system, it preserves the merits of environment-friendly, energy saving, healthy, comfortable, etc. Ongoing research and development works suggest that new desiccant materials and novel system configurations have significant potential for improving the performance and reliability and reducing the cost and size of rotary desiccant dehumidification and air conditioning system, thereby increasing its market competitiveness and breaking out the current fairly small niche market. For the purpose of providing an overview of recent efforts on these issues and showing how rotary desiccant air conditioning systems can be designed and coupled to available thermal energy, this paper presents and analyzes the status of rotary desiccant dehumidification and air conditioning in the following three aspects: the development of advanced desiccant materials, the optimization of system configuration and the utilization of solar energy and other low grade heat sources, such as solar energy, district heating, waste heat and bioenergy. Some key problems to further push forward the research and development of this technology are also summarized.  相似文献   

3.
A comparative numerical study is employed to investigate the heat and mass transfer between air and falling film desiccant in parallel and counter flow configurations. Nanoparticles suspensions are added to the falling film desiccant to study heat and mass transfer enhancements. The numerical results show that the parallel flow channel provides better dehumidification and cooling processes of the air than counter flow configuration for a wide range of pertinent parameters. Low air Reynolds number enhances the dehumidification and cooling rates of the air and high air Reynolds number improves the regeneration rate of the liquid desiccant. An increase in the channel height results in enhancing the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. The dehumidification and cooling rates of air are improved with an increase in the volume fraction of nanoparticles and dispersion factor. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 °C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 °C).  相似文献   

5.
The developments on liquid desiccant air-conditioning systems were illustrated and summarized in this paper. In order to obtain a better dehumidification (or humidification) performance, liquid desiccant should be cooled (or heated) rather than air. Two fundamental modules were proposed, including basic spray module with extra heat exchanger and total heat recovery device, which could be combined to set up various kinds of liquid desiccant air processors. The operating principle of heat pump-driven outdoor air processor as well as heat-driven outdoor air processor was analyzed. The COPair of the heat pump (or power)-driven outdoor air processor could be as high as 5.0 both in summer and in winter operating conditions. The COPair of the hot water-driven processor (65°C–80°C) was 1.19 and 0.93, respectively, using evaporative indoor exhaust air or cooling water to cool the dehumidification process. The liquid desiccant air processor-based temperature and humidity-independent control air-conditioning system could save 20%–30% operating energy compared with the conventional air-conditioning system.  相似文献   

6.
Liquid desiccant is energy efficient for dehumidification in air-conditioning systems. In this study, a novel dedicated outdoor air system (DOAS) adopting lithium chloride solution as liquid desiccant is proposed to process supply air. The DOAS mainly consists of a membrane-based total heat exchanger, a liquid dehumidifier, a regenerator and a dry cooling coil. It can realize independent temperature and humidity controls for supply air. Control strategies for the supply air dehumidification and cooling process as well as the desiccant solution regeneration process in the DOAS are developed and verified. The control performances of the proposed dedicated outdoor air system are investigated at different operation conditions by simulation tests. The results show that the DOAS is more suitable for hot and humid climates. The effects of the total heat exchanger on the performance of the DOAS are also evaluated. It can improve the system energy performance by 19.9–34.8%.  相似文献   

7.
This is a numerical study of dehumidification of humid air in laminar and turbulent flows (333 ≤ Re ≤ 6,000) over desiccant (silica gel)-lined finite flat plates and in channels. The problem is treated as conjugate flow, heat, and mass transfer, and solved by using a finite control-volume method. The effects of the plate thickness (3 ≤ b ≤ 7 mm), the Reynolds number (333 ≤ Re ≤ 3,333), and the turbulence intensity (1 ≤ TI ≤ 10%) on the dehumidification process are investigated. The results show that increasing the desiccant plate thickness decreases the heat and mass transfer coefficients by 25% and 22% at t = 10 s and x = 0.11 m, respectively, in comparison to a thin plate. Mass transport rates increase with Re, e.g., at t = 20 s, Wave increases by 50% as Re is increased 10-fold from 333 to 3,333. Turbulent flow in channel desiccants increases the rate of dehumidification, e.g., an increase in Re from 600 (laminar) to 6,000 (turbulent) results in an increase in Wave by 22% at t = 20 s. Also, increasing the turbulence intensity from 1% to 10% increase Wave by 7%.  相似文献   

8.
《Applied Thermal Engineering》2002,22(12):1347-1367
Desiccant wheels have two major applications: air dehumidification and enthalpy recovery. Since the operating conditions are different, heat and mass transfer behaviors in the wheels are quite different. In this paper, the performances of desiccant wheels used in air dehumidification and enthalpy recovery are compared with each other. To accomplish this task, a two-dimensional, dual-diffusion transient heat and mass transfer model which takes into account the heat conduction, the surface and gaseous diffusion in both the axial and the thickness directions is presented. Effects of the rotary speed, the number of transfer units, and the specific area on the performance of the wheel are investigated and compared in the two situations. The cycles that the desiccant and air undergo in the wheel are plotted in psychrometric charts to demonstrate the different heat and moisture transfer mechanisms during the dehumidification and enthalpy recovery processes.  相似文献   

9.
The developments on liquid desiccant air-conditioning systems were illustrated and summarized in this paper. In order to obtain a better dehumidification (or humidification) performance, liquid desiccant should be cooled (or heated) rather than air. Two fundamental modules were proposed, including basic spray module with extra heat exchanger and total heat recovery device, which could be combined to set up various kinds of liquid desiccant air processors. The operating principle of heat pump-driven outdoor air processor as well as heat-driven outdoor air processor was analyzed. The COPair of the heat pump (or power)-driven outdoor air processor could be as high as 5.0 both in summer and in winter operating conditions. The COPair of the hot water-driven processor (65°C–80°C) was 1.19 and 0.93, respectively, using evaporative indoor exhaust air or cooling water to cool the dehumidification process. The liquid desiccant air processor-based temperature and humidity-independent control air-conditioning system could save 20%–30% operating energy compared with the conventional air-conditioning system.  相似文献   

10.
A hybrid solar cooling system, which combines the technologies of rotary desiccant dehumidification and solid adsorption refrigeration, has been proposed for cooling grain. The key components of the system are a rotary desiccant wheel and a solar adsorption collector. The former is used for dehumidification and the later acts as both an adsorption unit and a solar collector. The heating load from sunshine can thus be reduced to a greater extent since the solar adsorption collector is placed on the roof of the grain depot. Compared with the solid adsorption refrigeration system alone, the new hybrid system performs better. Under typical conditions, the coefficient of performance of the system is >0.4 and the outlet temperature is <20°C. It is believed that the system can be used widely in the regions with abundant solar resources due to such advantages as environmental protection, energy saving and low operation costs. Additionally, some parameters, for example, ambient conditions, the effectiveness of the heat exchanger and evaporative cooler, mass air-flow rate, etc., which affect system performance, are also analyzed.  相似文献   

11.
Caihang Liang 《传热工程》2014,35(11-12):1043-1049
An independent air dehumidification system is helpful to improve indoor air quality and decrease energy consumption by heating, ventilation, and air conditioning (HVAC). A refrigeration dehumidification system with membrane-based total heat recovery is the key equipment to realize this goal. The system comprises two subsystems: a membrane total heat recovery and a direct expansion refrigeration system. The total heat exchanger has a membrane core where the incoming fresh air exchanges moisture and temperature simultaneously with the exhaust air. In this manner, the total heat or enthalpy from the exhaust air is recovered. Then the fresh air flows through a cooling coil where it is dehumidified below the dewpoint. Finally, the cold and dry air is supplied to indoors. A prototype of practical application is designed and fabricated. Experiments are conducted under variable operating conditions in the psychrometric calorimeter chamber. The effects of varying operating conditions like temperature and air humidity on the air dehumidification rate, cooling power, coefficient of performance, and compressor power are evaluated with indoor exhaust air dry bulb 27°C, wet bulb 19°C, and fresh air flow rate 200 m3/h. In comparison with a conventional refrigeration dehumidification system, the coefficient of performance and air dehumidification rate of the prototype are 2.3 times and 3 times higher, respectively. The performance of the prototype is rather robust under a hot and humid environment.  相似文献   

12.
尚鑫  白忠权  高治国 《节能》2012,31(5):25-27
为了克服利用冷却除湿的风冷热泵空调系统机器露点过低、需要再冷和过热、难以适应显热潜热比例的变化、不能蓄能等缺点,提出基于集热再生器溶液除湿的热泵空调系统。通过济南某工程实例研究表明,与冷却除湿空调系统相比较耗电量减少12.3%,利用太阳能加热溶液除湿具有降低空调除湿能耗、利用可再生能源、减少高品位能源消耗等优势。证明太阳能溶液除湿在空调系统中是处理潜热负荷的理想选择,具有较好的节能性。  相似文献   

13.
A finite difference model describing simultaneous heat and mass transfer in a hybrid liquid desiccant cooling system is presented in this paper. This type of system provides cooled and dehumidified air by a combination of a packed absorber tower and a conventional vapour compression system. The model will allow the prediction of the rate of condensation in the dehumidification tower and the evaporator of the vapour compression system, the conditions of the air and liquid desiccant leaving the tower, the conditions of the air leaving the evaporator, and other important parameters. The mathematical model results were validated with existing experimental data for a similar system with an uncertainty of 10.5% for the total rate of condensation and 0.8°C for the evaporator air exit temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A one‐dimensional mathematical model is developed to evaluate the operating and design parameters of the desiccant wheel for air conditioning application. In this paper, dehumidification coefficient of performance (DCOP) and sensible energy ratio (SER) are adopted as a combined performance index to reflect the dehumidification and thermal performance of the desiccant wheel. The analysis of the results reveals that for lower SER, suitable wheel length, wall thickness, channel pitch, and channel height should be 100 mm, 0.2 mm, 3 mm, and 5 mm, respectively. These design parameters have been analyzed under different operating conditions and it was found that for higher DCOP, rotational speed, regeneration temperature, process and regeneration velocity should be 20 rph, 60°C, and 2 m/s.  相似文献   

15.
In this paper, two desiccant-coated heat exchangers, which are actually fin-tube heat exchanging devices coated with silica gel and polymer materials respectively, are investigated experimentally. Due to the hygroscopic properties of the desiccant materials, both the sensible heat and the latent heat of the process air can be handled by using this kind of heat exchanger. An experimental setup was designed and built to test the performance of this unit. It is found that this desiccant-coated fin-tube heat exchanger well overcomes the side effect of adsorption heat which occurs in desiccant dehumidification process, and achieves good dehumidification performance under given conditions. The silica gel coated heat exchanger behaves better than the polymer one. The influences of regeneration temperature, inlet air temperature and humidity on the system performance in terms of average moisture removal rate Davg and thermal coefficient of performance COPth were also analyzed.  相似文献   

16.
An air conditioning option, that is, desiccant cooling system (DCS) in which alternative energy source, such as solar energy, nature gas and rejected heat, can play their part for the benefit of environment and saving energy is constructed by regenerative dehumidification component combined with heat exchanger (recuperator) and evaporative cooler.The mathematical model of an rotary desiccant wheel that can be used to calculate the performance of stationary or rotary bed and transient or steady state operation is founded by considering many terms. A computer program for this new model has been compiled and some results of computer simulation compared with experimental value, they are good in agreement.The performance of evaporator is estimated by computer. We developed some kinds of evaporator of which the COP is about 1015 to decrease the room temperature and clean the air in drier climates. Using a new kind of chemical refrigerant invented by Zu-She Liu, the air conditioner will be simple in construction and very efficient (COP > 30).  相似文献   

17.
提出了一种新型再生式除湿换热器,建立了物理和数学模型。通过实验得到了该除湿换热器的实际动态除湿性能;将除湿器除湿性能的模拟结果与实验结果进行比较,验证了数学模型的可靠性。研究结果表明:该文研制的再生式除湿换热器具有良好的除湿性能,在给定工况(温度为24.7℃,含湿量为12.41g/kg)下除湿率可达到43.8%;还分析了处理风速、再生温度以及除湿换热器厚度对除湿性能和压降的影响,获得了使除湿换热器性能最佳的管排、翅片间距和迎面风速参数。  相似文献   

18.
A detailed mathematical model is developed to predict the heat and mass transfer performance of a vapour compression/liquid desiccant hybrid cooling and dehumidification absorber referred to as RCLDA system in this work. An RCLDA system uses a desiccant loop to bring the humidity within the comfort range along with a sensible cooling loop to bring the temperature within the comfort range. In an attempt to increase both the COP of the desiccant as well as the cooling system, the RCLDA system combines a desiccant cycle operating in its most efficient range along with a cooling cycle operating at higher evaporator temperatures. Governing equations describing the steady-state, two-dimensional heat and mass transfer in an RCLDA system are developed to study its cooling and dehumidification performance. A numerical scheme based on a control volume analysis is used to solve these differential equations. A parametric analysis is conducted to help understand and optimize the performance of this RCLDA system. The analytical model is also used to develop heat and mass transfer performance maps for partial load performance estimation of the RCLDA system. A knowledge of the partial load performance is required for the yearly performance estimation. It is found from this study that the performance of the RCLDA system is a strong function of refrigerant and air side NTU, evaporator temperature, carry-over regenerator load and refrigerant and air mass flow rates. The mass flow rate of desiccant solution in the absorber did not have any significant impact on the performance of the absorber. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The thermal and dehumidification behaviour of a standard cross-flow type plate heat exchanger, intended for use as a dehumidifier/cooler, has been investigated both experimentally and numerically. Three sets of experiments have been carried out where air is blown into the primary and secondary sides of the exchanger, while water and liquid desiccant were being sprayed in a counter flow arrangement. The first set represents the indirect evaporative cooling of the primary stream by the secondary air stream. The second set is with liquid desiccant only and no indirect evaporative cooling. In the third set of experiments the primary air stream is indirectly evaporatively cooled by the secondary air stream and dehumidified by the liquid desiccant sprayed into the primary side of the exchanger. The above experiments indicate that the heat exchanger performs well when used with liquid desiccant. Furthermore, for an exchanger angle of 45°, there is an optimum value of air mass flow rate at which the effectiveness and dehumidification efficiency of the plate heat exchanger are maxima. To investigate the effect of the ambient air conditions on the PHE performance, further experiments were carried out using a heater element and a humidifier. The results show that under laboratory conditions the exchanger effectiveness and dehumidification efficiency increase with increasing primary air inlet temperature and humidity ratio. The experimental results were used to validate a computer model developed for the cross-flow type plate heat exchanger/dehumidifier. Comparison indicates that the numerical results are in good agreement with the experiments.  相似文献   

20.
Humidity and indoor moist surrounding affect air cleanliness and protects harmful microorganisms when relative humidity is above 70%. In humid climates, the humidity issues are a major contributor to energy inefficiency in HVAC devices. The use of liquid desiccant dehumidification systems of supply air is a viable alternative to reduce the latent heat load on the HVAC system and improve efficiency. Thermal energy, at a temperature as low as 40–50°C, required for the operation of a liquid desiccant hybrid air conditioner can be efficiently obtained using a flat-plate solar collector. In this work a model of a solar-operated liquid desiccant system (using calcium Chloride) for air dehumidification is developed. The system utilizes packed beds of counter flow between an air stream and a solution of liquid desiccant for air dehumidification and solution regeneration. The desiccant system model is integrated with a solar heat source for performance evaluation at a wide range of recorded ambient conditions for Beirut city. Standard mass and energy balances are performed on the various components of the system and a computer simulation program is developed for the integrated system analysis. The desiccant system of the current study replaces a 3 TR (10.56 kW) vapour compression unit for a typical house as low latent load application, and is part of a hybrid desiccant–vapour compression system for a high latent load application, namely a small restaurant with an estimated cooling load of 11.39 TR (40 kW), including reheat. The relevant parameters of the desiccant system are optimized at peak load, and it is found out that there is an important energy saving if the ratio of the air flow rate in the regenerator to that in the dehumidifier is about 0.3 to 0.4. The COP of the desiccant unit is 0.41 for the house, and 0.45 for the restaurant. The size of the vapor compression unit of the restaurant is reduced to 8 TR when supplemented by a desiccant system. The performance is studied of the desiccant system integrated with a solar collector system and an auxiliary natural gas heater to heat the regenerator. The transient simulation of the solar desiccant system is performed for the entire cooling season. The solar fraction for the house is equal to 0.25, 0.47, and 0.68 for a collector area of 28.72, 57.44, and 86.16 m2, respectively. The solar fraction for the restaurant is 0.19, 0.38, and 0.54, for the same collector areas. The life cycle savings for the house run solely on desiccant system were positive only if natural gas is available at a cheap price. For the restaurant, the economic benefit of the desiccant system is positive, because the need for reheat in the vapor compression system is eliminated. For a gas price of 0.5638 $/kg, the payback period for the restaurant turned out to be immediate if the energy is supplied solely by natural gas, and 11 years if an 86.16 m2 solar collector is implemented to reduce the fuel consumption. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号