首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear, steady, and mixed convective boundary layer flow and heat transfer of an incompressible tangent hyperbolic non-Newtonian fluid over an isothermal wedge in the presence of magnetic field are analyzed numerically using the implicit Keller-Box finite-difference technique. The entropy analysis due to MHD flow of a tangent hyperbolic fluid past an isothermal wedge and viscous dissipation is also included. The numerical code is validated with previous Newtonian studies available in the literature. Graphical and tabulated results are analyzed to study the behavior of the fluid velocity, temperature, concentration, shear stress, heat transfer rate, entropy generation number, and Bejan number for various emerging thermophysical parameters, namely Weissenberg number (We), power-law index (n), mixed convection parameter (λ), pressure gradient parameter (m), Prandtl number (Pr), Biot number (γ), Hartmann number (Ha), Brinkmann number (Br), Reynolds number (Re), and temperature gradient (Π). It is observed that velocity, entropy, Bejan number, and surface heat transfer rate are reduced with the increase in the Weissenberg number, but temperature and local skin friction are increased. An increase in pressure gradient enhances velocity, entropy, local skin friction, and surface heat transfer rate, but reduces temperature and Bejan number. An increase in an isothermal power-law index (n) is observed to increase velocity, Bejan number, and surface heat transfer rate, but it decreases temperature, entropy, and local skin friction. An increase in the magnetic parameter (Ha) is found to decrease temperature, entropy, surface heat transfer rate, and local skin friction, and it increases velocity and Bejan number. The research is applicable for coating materials in chemical engineering, for instance, robust paints, production of aerosol deposition, and water-soluble solution thermal treatment.  相似文献   

2.
Entropy generation of an Al2O3–water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side‐wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 and 107 and volume fraction between 0 and 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation, and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer, and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.  相似文献   

3.
4.
In this article, mesoscopic approach has been utilized to investigate magnetic field impact on CuOH2O nanofluid free convection inside a porous cavity with elliptic heat source. Simulations have been done via LBM. KKL model is employed to consider Brownian motion impact on nanofluid properties. Influences of Rayleigh number (Ra), nanofluid volume fraction (?), Hartmann number (Ha), Darcy number (Da) on heat transfer treatment are demonstrated. Outputs demonstrate that temperature gradient reduces with increase of Ha while it increases with augment of Da,Ra.  相似文献   

5.
This laminar fluid study investigates the effects of a magnetic field on the entropy generation during fluid flow and heat transfer due to an exponentially stretching sheet. Using the suitable transformations we have obtained the analytical solutions for momentum and energy equation in terms of Kummer's function. The velocity and temperature profiles are obtained for various physical parameters which are utilized to find the entropy generation number Ns and the Bejan number Be. The effects of various parameters on entropy production number and the Bejan number are studied through graphs using velocity and temperature profiles. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21112  相似文献   

6.
The density of heat transfer rate from a vertical array of flat tubes in cross flow is maximized under fixed pressure drop using constructal design. With the constructal design, the tube arrangement is found such that the heat currents from the tubes to the coolant flow easily. The constraint in the present constructal design is the volume where the tubes are arranged inside it. The two degrees of freedom available inside the volume are the tube‐to‐tube spacing and the length of the flat part of the tubes (tube flatness). The tubes are heated with constant surface temperature. The equations of continuity, momentums, and energy for steady, two‐dimensional, and laminar forced convection are solved by means of a finite‐volume method. The ranges of the present study are Bejan number (dimensionless pressure drop) (103Be ≤ 105) and tube flatness (dimensionless length of the tube flat part) (0 ≤ F ≤ 0.8). The coolant used is air with Prandtl number (Pr = 0.72). The results reveal that the maximum heat transfer density decreases when the tube flatness decreases at constant Bejan number. At constant tube flatness, the heat transfer density increases as the dimensionless pressure drop (Bejan number) increases. Also, the optimal tube‐to‐tube spacing is constant, irrespective of the tube flatness at constant Bejan number.  相似文献   

7.
The issue of entropy generation in Poiseuille–Benard channel flow is analyzed by solving numerically the mass, momentum and energy equations with the use of the classic Boussinesq incompressible approximation. The numerical scheme is based on Control Volume Finite Element Method with the SIMPLER algorithm for pressure–velocity coupling. Results are obtained for Rayleigh numbers Ra and irreversibility φ ranging from 103 to 5×104 and from 10−4 to 10 respectively. Variations of entropy generation and the Bejan number as a function of Ra and φ are studied. The limit value φl for which entropy generation due to heat transfer is equal to entropy due to fluid friction is evaluated. It has been found that φl is a decreasing function of the Rayleigh number Ra. φl varies from 0.0015 to 0.096 when Ra decrease from 5×104 to 103. Stream lines and entropy generation maps are plotted at six times over one period at Ra =104 and φ=10−3. It has been found that the maximum entropy generation is localized at areas where heat exchanged between the walls and the flow is maximum. No significant entropy production is seen in the main flow.  相似文献   

8.
In the present study, entropy generation in rectangular cavities with the same area but different aspect ratios is numerically investigated. The vertical walls of the cavities are at different constant temperatures while the horizontal walls are adiabatic. Heat transfer between vertical walls occurs by laminar natural convection. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation due to heat transfer and fluid friction, the local Bejan number and local entropy generation number are determined and related maps are plotted. The variation of the total entropy generation and average Bejan number for the whole cavity volume at different aspect ratios for different values of the Rayleigh number and irreversibility distribution ratio are also evaluated. It is found that for a cavity with high value of Rayleigh number (i.e., Ra = 105), the total entropy generation due to fluid friction and total entropy generation number increase with increasing aspect ratio, attain a maximum and then decrease. The present results are compared with reported solutions and excellent agreement is observed. The study is performed for 102 < Ra < 105, 10− 4 < ? < 10− 2, and Pr = 0.7.  相似文献   

9.
Second law characteristics of heat transfer and fluid flow due to forced convection of steady-laminar flow of incompressible fluid inside channel with circular cross-section and channel made of two parallel plates is analyzed. Different problems are discussed with their entropy generation profiles and heat transfer irreversibility characteristics. In each case, analytical expression for entropy generation number (NS) and Bejan number (Be) are derived in dimensionless form using velocity and temperature profiles.  相似文献   

10.
The heat transfer density rate from a row of rhombic tubes cooled by forced convection is maximized based on constructal design. A row of parallel rhombic tubes are placed in a fixed volume, the horizontal axis of the tubes is kept constant while the vertical axis of the tubes and the spacing between the tubes are changed to facilitate the heat flow from the tubes to the coolant. The tubes are kept at constant temperature and the incoming free‐stream flow is induced by constant pressure drop. For steady, two‐dimensional, incompressible, and laminar forced convection, the governing equations are solved numerically by finite volume method with SIMPLE algorithm. The dimensionless pressure drop (Bejan number, Be) ranging from 10 3 to 10 5, the range of the vertical axis of the tube is 0.2 ≤ B ≤ 2, and the working fluid is air ( Pr = 0.71). The results show that the optimal spacing decreases and the maximum heat transfer density increases as the Bejan number increases for all vertical axes of the tube. Bejan number and the bluntness of the tube have a significant effect of the flow structure (separation and vortex formation) around the tubes at the optimal spacings.  相似文献   

11.
The maximization of volumetric heat transfer density from radially finned tubes in cross-flow is investigated in this study based on the constructal design method. A row of radially finned tubes is placed in cross-air flow. The tubes and the radial fins are heated at uniform temperatures and cooled by the air cross-flow. The cross-air flow is generated by a finite pressure difference. Two dimensionless pressure differences (Bejan number) are considered (Be = 103 and Be = 105). The objective function, the degrees of freedom, and the constraints in the constructal design method should be identified. The objective function is the maximization of the heat transfer density from the finned tubes. The degrees of freedom are; the fin tip-to-fin tip spacing, the number of fins, the tube diameter, the fin thickness, and the angle between the fins. The constraints are the length and height of the space occupied by the finned tubes. The pressure-driven flow and energy equations (steady, two-dimensional, and incompressible) are solved by means of the finite volume method. The ranges of the dimensionless fin tip-to-fin tip spacing are (0.2 ≤ S ≤ 1 for Be = 103 and 0.05≤ S ≤ 0.3 for Be = 105). The number of fins is changed as (N = 2, 4, 6, 8, 10, and 12). The dimensionless tube diameter is changed as (D = 0.25, 0.5, and 0.75). The dimensionless fin thickness is changed as (T = 0.001, 0.01, and 0.05). The results showed that for both (Be = 103) and (Be = 105), the highest value of the maximum volumetric heat transfer density is for (N = 2) and decreases as the number of fins increases. In addition, the minimum values of the maximum volumetric heat transfer density occur when the vertical fins exist at (N = 4, 8, and 12).  相似文献   

12.
In this paper, combined convective heat transfer and nanofluids flow characteristics in a vertical rectangular duct are numerically investigated. This investigation covers Rayleigh numbers in the range of 2 × 106Ra ≤ 2 × 107 and Reynolds numbers in the range of 200 ≤ Re ≤ 1000. Pure water and five different types of nanofluids such as Ag, Au, CuO, diamond, and SiO2 with a volume fraction range of 0.5% ≤ φ ≤ 3% are used. The three‐dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method (FVM). The effects of Rayleigh number, Reynolds number, nanofluids type, nanoparticle volume fraction of nano‐ fluids, and effect of radiation on the thermal and flow fields are examined. It is found that the heat transfer is enhanced using nanofluids by 47% when compared with water. The Nusselt number increases as the Reynolds number and Rayleigh number increase and aspect ratio decreases. A SiO2 nanofluid has the highest Nusselt number and highest wall shear stress while the Au nanofluid has the lowest Nusselt number and lowest wall shear stress. The results also revealed that the wall shear stress increases as Reynolds number increases, aspect ratio decreases, and nanoparticle volume fraction increases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20354  相似文献   

13.
In this paper, natural convection and entropy generation of non-Newtonian nanofluid, using the Buongiorno's mathematical model in a cavity in the presence of a uniform magnetic field has been analyzed by Finite Difference Lattice Boltzmann method (FDLBM). The cavity is filled with nanofluid which the mixture shows shear-thinning behavior. This study has been performed for the certain pertinent parameters of Rayleigh number (Ra = 104 and 105), Hartmann number (Ha = 0, 15, 30), buoyancy ratio number (Nr = 0.1, 1, and 4), power-law index (n = 0.4–1), Lewis number (Le = 1, 5, and 10), Thermophoresis parameter (Nt = 0.1, 0.5, 1), and Brownian motion parameter (Nb = 0.1, 1, 5). The Prandtl number is fixed at Pr = 1. The Results indicate that the augmentation of Hartmann number causes heat and mass transfer to drop. The increase in Rayleigh number enhances heat and mass transfer for various power-law indexes. The alteration of the power-law index changes heat and mass transfer. In addition, the rise of Hartmann number declines the shear-thinning behavior. The increase in the Lewis number augments mass transfer while it causes heat transfer to drop. The rise of the Thermophoresis and Brownian motion parameters ameliorate mass transfer and declines heat transfer significantly. The augmentation of buoyancy ratio number enhances heat and mass transfer. The augmentation of the power-law index declines various entropy generations in different Rayleigh numbers and Hartmann numbers. The increase in Hartmann number declines total entropy generation in different Rayleigh numbers. In addition, the rise of Rayleigh number and Hartmann number causes Bejan number to drop in various power-law indexes. The enhancement of the Lewis number provokes the total irreversibility to rise. Further, the total entropy generation increases as the buoyancy ratio number augments. It was shown that the increase in the Brownian motion and Thermophoresis parameters enhance the total irreversibility.  相似文献   

14.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   

15.
This paper deals with the effect of magnetic fields (Br, Bθ, Bz) applied in r-, θ-, z-directions, respectively, on entropy production and heat transfer and in a horizontal cylinder filled with an Al2O3-water nanofluid. The results are verified using literature data. For different Richardson, Ri, and Hartmann numbers, Ha, the nanoparticles (NP) ϕ, and magnetic field orientation combined effect provide a better understanding of heat transfer and entropy optimization. The results indicate that entropy production and heat transfer and rates depend on magnetic field intensity and direction. Also, increasing Ri and NP increases entropy generation and heat transfer. Finally, applying a radial magnetic field promotes a better convective heat transfer and minimizes entropy production.  相似文献   

16.
This article reports a numerical study of natural convection heat transfer in a differentially heated enclosure filled with a Al2O3–water nanofluid. Fluent v6.3 is used to simulate nanofluid flow. Simulations have been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Ra = 106, 107, and the volumetric fraction of alumina nanoparticles, ? = 0 ? 4%. The effect of Brownian motion on the heat transfer is considered and examined. The numerical results show a decrease in heat transfer with an increase in particle volume fraction. Similar to experimental results, the Nusselt number increases with the Rayleigh number in the numerical results. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21121  相似文献   

17.
A numerical investigation has been carried out to study the natural convection and entropy generation within the three-dimensional enclosure with fillets. There are two immiscible fluids of Multi-Walled Carbon Nano-Tubes (MWCNTs)-water and air in the enclosure, which is simulated as two discrete phases. There are two heaters with constant heat flux at the sides, and the top and bottom walls are kept at cold constant temperature. The finite volume approach is applied to solve the governing equations. Moreover, a numerical method is developed based on the three-dimensional solution of Navier–Stokes equations. The fluid flow, heat transfer, and total volumetric entropy generation due to natural convection are studied carefully in a three-dimensional enclosure. The effects of the corner radius of fillets (r?=?0, 0.15, 0.2, and 0.25), Rayleigh number (103?Ra?6), and solid volume fraction (φ?=?0.002 and 0.01) of the nanofluid have been investigated on both natural convection characteristic and volumetric entropy generation.* The results show that the curved corner can be an effective method to control fluid flow and energy consumption, and three dimensional solutions render more accurate results.  相似文献   

18.
This investigation focuses on the influence of thermal radiation on the magnetohydrodynamic flow of a Williamson nanofluid over a stretching sheet with chemical reaction. The phenomena at the stretching wall assume convective heat and mass exchange. The novelty of the present study is the thermodynamic analysis in the nonlinear convective flow of a Williamson nanofluid. The resulting set of the differential equations are solved by the homotopy analysis method. We explored the impacts of the emerging parameters on flow, heat, and mass characteristics, including the rate of entropy generation and the Bejan number through graphs, and extensive discussions are provided. The expressions for skin friction, Nusselt and the Sherwood numbers are also analyzed and explored through tables. It is concluded that the rate of mass transfer may be maximized with the variation of the Williamson and chemical reaction parameters. Moreover, the entropy generation rate and the Bejan number are augmented via increasing the Williamson parameter.  相似文献   

19.
The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average effective Nusselt number was studied over a wide range of Rayleigh numbers. The results showed that there was an optimal combination of number of fins and fin height for maximum heat transfer from the cylinder for a given value of Rayleigh number. A high number of short fins slightly decreased the heat transfer from the cylinder. The calculated velocity and temperature profiles also were used to study the total entropy generation. The total entropy production was dominated by entropy generation due to thermal effects. The exception was at Ra D = 103 and a large cylinder diameter where entropy generation was dominated by entropy generation due to viscous effects. This information can be used to access the changes in the thermodynamic efficiency due to the addition of fins to enhance the natural convection heat transfer from a horizontal cylinder.  相似文献   

20.
This article presents the results of a numerical study on natural convection in a square enclosure filled with ethylene glycol–copper nanofluid in the presence of magnetic fields. Two opposite horizontal walls of the enclosure are insulated and the two vertical walls are kept constant at different temperatures. A uniform horizontal magnetic field is externally imposed. The governing equations (mass, momentum, and energy) are formulated and solved numerically with a finite element using COMSOL Multiphysics. The effects of pertinent parameters such as Rayleigh number (103 ≤ Ra ≤ 107), Hartmann number (0 ≤ Ha ≤ 120), and solid volume fraction (0 ≤ φ ≤ 0.06) on the flow and the heat transfer performance of the enclosure are examined when the Prandtl number is assumed to be Pr = 151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号