首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Positive temperature coefficient of resistivity (PTCR) hollow fibers that exhibit self-regulating heating characteristics have potential applications in temperature-swing adsorption systems (TSA), such as CO2 recovery and drying of compressed air. La-doped BaTiO3 hollow fibers displaying a PTCR effect were produced by phase inverting a casting solution consisting of N-methly-2-Pyrrolidone, polymethyl methacrylate, polyvinylpyrrolidone, BaTiO3, TiO2, and La2O3 through a spinneret into a coagulating waterbath. This was followed by polymer debinding, high temperature sintering between 1350?1400 °C and annealing in air at 1175 °C to produce hollow fibers of the composition Ba0.9975La0.0025TiO3. Hydrothermal synthesis was implemented to deposit an adsorbent porous zeolite X layer within the hollow fiber lumen, which was confirmed by electron dispersive X-ray spectroscopy and CO2 adsorption at 0 °C. Hence, these materials can be applied to energy efficient TSA gas separation processes. The results are discussed in terms of hollow fiber microstructure, adsorption characteristics and electrical properties.  相似文献   

2.
The process of the dry-wet spinning of asymmetric hollow-fiber membranes has been studied. The set of the parameters of spinning process, which allows the preparation of the smooth, round, and symmetric cross section of a fiber and the given inner and outer diameter so that the hollow-fiber membrane would finally appear as a smooth hollow cylinder, has been determined. The procedure was carried out using the fabrication of hollow fibers from poly(2,6-dimethyl-1,4-phenylene oxide) as an example. The samples with the oxygen permeance Λ/δ (O2) = 400 L/(m2 h bar) and the separation factor corresponding to the properties of material, α(O2/N2) = 4.5, have been obtained. The effective thickness of the selective layer of this membrane is 100 nm. The maximum diameter ratio that has been attained upon dry-wet spinning is 1.4 for the studied polymer solution–internal coagulant system.  相似文献   

3.
The influences of bulk diffusion and surface exchange on oxygen transport of (La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF) hollow fiber membranes were investigated. As an outcome, two strategies for increasing the oxygen permeation were pursued. First, porous LCCF hollow fibers as support were coated with a 22 μm dense LCCF separation layer through dip coating and co-sintering. The oxygen permeation of the porous fiber with dense layer reached up to 5.10 mL min?1 cm-2 at 1000 °C in a 50 % CO2 atmosphere. Second, surface etching of dense LCCF hollow fibers with H2SO4 was applied. The surface etching of both inner and outer surfaces leads to a permeation improvement up to 86.0 %. This finding implies that the surface exchange reaction plays a key role in oxygen transport through LCCF hollow fibers. A good long-term (>250 h) stability of the asymmetric hollow fiber in a 50 % CO2 atmosphere was found at 900 °C.  相似文献   

4.
《分离科学与技术》2012,47(4):1059-1068
Abstract

A method has been developed by which a porous hollow fiber which cannot separate gases to a significant extent can be made to exhibit its intrinsic separation properties by coating with an appropriate material. A unique feature of this composited fiber is that the separation properties are determined by the porous support polymer rather than by the coating polymer. The hollow fibers produced by this method have extraordinarily high rates compared to earlier hollow fibers used for gas separations. In addition, they can function under extremely high pressure gradients. Gases such as He, H2, and CO2 can be separated from gases like CH4, CO, and N2, and the system is chemically and physically stable to a wide range of typical industrial contaminants. As a result, systems based on these fibers should be useful in a variety of processes, some of which include stream splitting, gas composition control, H2 upgrading, and purge gas recovery.  相似文献   

5.
The direct dual layer spinning of Torlon®/silica hollow fibers with a neat Torlon® lumen layer is reported here for the first time. The dual layer fibers containing a porous Torlon®/silica main structure and a dense, pure Torlon® polymer bore‐side coating provide a simplified, scalable platform from which to construct hollow fiber amine sorbents for postcombustion CO2 capture. After fiber spinning, an amine infusion process is applied to incorporate PEI into the silica pores. After combining dilute Neoprene treatment followed by poly(aramid)/PDMS treatment, a helium permeance of the fiber sorbents of 2 GPU with a He/N2 selectivity of 7.4 is achieved. Ten of the optimized amine‐containing hollow fibers are incorporated into a 22‐inch long, 1/2 inch OD shell‐and‐tube module and the module is then exposed on the shell side to simulated flue gas with an inert tracer (14 mol % CO2, 72 mol % N2, 14 mol % He [at 100% R.H.]) at 1 atm and 35°C in a RTSA system for preliminary CO2 sorption experiments. The fibers are found to have a breakthrough and equilibrium CO2 capacity of 0.8 and 1.2 mmol/g‐ dry fiber sorbent, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41845.  相似文献   

6.
We have developed defect‐free asymmetric hexafluoro propane diandydride (6FDA) durene polyimide (6FDA‐durene) hollow fibers with a selectivity of 4.2 for O2/N2 and a permeance of 33.1 ×10?6 cm3 (STP)/cm2‐s‐cmHg for O2. These fibers were spun from a high viscosity in situ imidization dope consisting of 14.7% 6FDA‐durene in a NMP solvent and the inherent viscosities (IV) of this 6FDA‐durene polymer was 0.84 dL/g. Low IV dopes cannot produce defect‐free hollow fibers, indicating a 6FDA‐durene spinning dope with a viscosity in the region of chain entanglement seems to be essential to yield hollow fibers with minimum defects. The effects of spinning parameters such as shear rates within a spinneret and bore fluids as well as air gap on gas separation performance were investigated. Experimental data demonstrate that hollow fibers spun with NMP/H2O as the bore liquid have higher permeances and selectivities than those spun with glycerol as the bore liquid because the former has a relatively looser inner skin structure than the latter. In addition, the selectivity of hollow fibers spun with NMP/H2O as the bore liquid changes moderately with shear rate, while the selectivity of hollow fibers spun with glycerol are less sensitive to the change of shear rate. These distinct behaviors are mainly attributed to the different morphologies generated by different bore fluids. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2166–2173, 2001  相似文献   

7.
Dual‐layer hollow fiber membranes were produced from blends of Ultem and polymer of intrinsic microporosity (PIM‐1) with enhanced gas permeance. The effects of spinning parameters (take‐up speed and air gap distance) on gas separation performance were investigated based on the pristine Ultem. Selected spinning conditions were further adopted for the blend system, achieving defect‐free and almost defect‐free hollow fibers. Adding PIM results in a higher fractional free volume, 50% increments in gas permeance were observed for Ultem/PIM‐1 (95/5) and more than 100% increments for Ultem/PIM‐1 (85/15). Both O2/N2 and CO2/CH4 selectivities remained the same for Ultem/PIM‐1 (95/5) and above 80% of their respective intrinsic values for Ultem/PIM‐1 (85/15). The selective layer thickness ranges from 70 to 120 nm, indicating the successful formation of ultrathin dense layers. Moreover, minimum amounts of the expensive material were consumed, that is, 0.88, 1.7, and 2.3 wt % PIM‐1 for Ultem/PIM‐1 (95/5), (90/10), and (85/15), respectively. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3848–3858, 2014  相似文献   

8.
We have observed time-dependent drifts in permeability and selectivity for two types of composite hollow fibers used for air separation. One was PVP [poly(4-vinyl pyridine)]/6FDA-durene/polyacrylonitrile (PAN) composite hollow fiber, and the other was 6FDA-3,5-diaminobenzonitrile/6FDA-durene/PAN composite hollow fiber. Their permeabilities dropped 50 to 70% after 3 to 5 months, while selectivities for O2N2 deteriorated slightly with time. A systematic study was carried out to investigate the causes of this creep behavior. Various composite fibers, such as polyimide/Celgard and polyimide siloxane/PAN, were fabricated to simulate the aging process. We conclude that the aging phenomenon observed for these two 6FDA-durene/PAN composite fibers was not due to the structure change of the PAN substrate, but mainly to the densification effect of the 6FDA-durene gutter layer on composite fibers. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
A series of polysiloxaneimide (PSI)/polyetherimide (PEI) composite hollow fibers were fabricated by coextrusion and phase inversion. The hydrophobic PSI outer layer was set as the selective layer which was supported by the PEI inner layer. The PSI was synthesized by polycondensation of 3,3′,4,4′‐Biphenyltetracarboxylic Dianhydride (BPDA) with amino siloxane X‐22‐161A and a chain extender, 1,3‐Bis (3‐aminopropyl) ?1,1,3,3‐tertramethyldisiloxane (BATS). It was found that the macroscopic uniformity of PSI layer was dependent on the dope formulation, coagulant composition and dope flow rate: (1) the higher similarity degree of the solvent(s) for different layers in terms of solubility parameters, (2) the utilization of surfactant as a component in the water coagulant, and (3) higher flow rates of the outer layer dopes, led to the formation of more uniform and smoother PSI outer layer. The maximum outer layer thickness was around 2 μm. The bulk of the PEI layers were porous with finger like macrovoids. The outer surface of the inner PEI layer for some batches of the hollow fibers was confirmed to be porous. The original dual‐layer hollow fibers showed poor pervaporation performance. Post treatment was applied to cure the hollow fiber, delivering composite membranes with performance dominated by the coating material of PDMS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43324.  相似文献   

10.
Pervaporation membrane technology is commercially successful in the dehydration of organic solvents, and the technology has potential for seawater desalination with high recovery because of its capability to treat highly saline water. But to make the technology advantageous over the other available membrane desalination technologies in terms of productivity flux without additional energy cost, the selective barrier layer is required to be extremely thin, defect‐free, hydrophilic, and selective to water. In this work, we prepared an efficient membrane by reinforcing a highly water‐permeable but continuous barrier layer of poly(vinyl alcohol)–silica (PVA‐SiO2) hybrid material on porous polysulfone hollow fibers. The PVA‐SiO2 in acidified and hydrated ethanol was aged at room temperature for a period to allow solvent evaporation to obtain the solution concentration desired for the reinforcement. The reinforced hollow fiber membrane with optimal PVA‐SiO2 barrier layer thickness exhibited a performance with a flux of 20.6 L m?2 h?1 and 99.9% salt rejection from a saline feed of 2000 ppm NaCl at 333 K. The effects of PVA‐SiO2, temperature, and feed salinity on the pervaporation performance of the membrane were also studied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45718.  相似文献   

11.
Polydimethylsiloxane (PDMS) hollow‐fiber membranes grafted with 1H,1H,9H‐hexadecafluorononyl methacrylate (HDFNMA), which is a fluoroalkyl methacrylate, using a 60Co irradiation source, were characterized and applied to pervaporation. The PDMS hollow‐fiber membranes were filled with N2 gas and sealed. The membranes and the HDFNMA solution were then irradiated simultaneously. In the HDFNMA solution, graft polymerization was performed. The degree of grafting of the outside surface of the hollow fiber was greater than that in the inside surface of the hollow fiber. In the grafted PDMS hollow‐fiber membranes, the best separation performance was shown due to the introduced hydrophobic polymer, poly(HDFNMA). The grafted membrane had a microphase‐separated structure, that is, a separated structure of PDMS and graft‐polymerized HDFNMA. The permeability of molecules in the poly(HDFNMA) phase was so low that the diffusion of molecules was prevented in the active layer with many poly(HDFNMA) domains, as the feed solution was introduced through the inside of the hollow fibers and the outside was vacuumed. As the feed solution was introduced through the outside of the hollow fibers and the inside was vacuumed, the diffusion of molecules was not prevented in the active layer with few poly(HDFNMA) domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1573–1580, 2003  相似文献   

12.
A catalytic membrane reactor was established with catalytic hollow fibers prepared by supporting polymer anchored palladium catalysts on the inside wall of cellulose acetate hollow fibers. The selective hydrogenation of cyclopentadiene was carried out in the catalytic membrane reactor at 40°C in two ways: (1) by hydrogen permeating into the hollow fibers, and (2) by hydrogen premixed in the gas phase.  相似文献   

13.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
A transformative platform is reported to derive ultra-thin carbon molecular sieve (CMS) hollow fiber membranes from dual-layer precursor hollow fibers with independently tuned skin layer and substrate properties. These ultra-thin CMS hollow fiber membranes show attractive CO2/CH4 separation factors and excellent CO2 permeances up to ~1,400% higher than state-of-the-art asymmetric CMS hollow fiber membranes. They provide a unique combination of permeance and selectivity competitive with zeolite membranes, but with much higher membrane packing density and potentially much lower costs.  相似文献   

15.
For the first time the combination of a separation process with a plasma process was successfully tested. In this case, a mixed‐conducting perovskite membrane separates the oxygen. At 1 kW a permeation of 2.24 mL min?1cm?2 could be achieved. Corresponding perovskite membranes have been manufactured as hollow fibers with a very good CO2 stability. The hollow fibers showed a constant permeation over more than 200 h. Furthermore, a spinning process with a sulphur‐free polymer binder has been established.  相似文献   

16.
Asymmetric niobium pentoxide (Nb2O5) hollow fiber membranes were prepared by the phase inversion and sintering process at temperatures ranging from 1000 to 1350°C. The effects of extrusion parameters on the morphology and properties of the produced membranes were systematically explored. Asymmetric hollow fibers with regular inner contour were obtained at extrusion flow rates of 15 and 25 ml min−1 of ceramic suspension and internal coagulant, respectively. Hollow fibers sintered at temperatures greater than 1200°C presented modifications in the morphology of Nb2O5 grains, which were also evidenced by X-ray diffraction and Raman analyses. Hollow fibers produced with an air gap of 50 mm presented a dense outer sponge-like layer and micro-voids formed from the inner surface. These hollow fibers sintered at 1200°C presented suitable bending resistance and water permeability (24.2 ± 0.60 MPa and 3.00 ± 0.01 L h-1 m-2 kPa-1, respectively). The outer sponge like layer was mitigated when the fibers were produced without air-gap.  相似文献   

17.
Electrospinning is one of the simple techniques for the production of polymer nano‐microfibers. In this study, hollow fibers from poly(methyl methacrylate) (PMMA) were formed by electrospinning under pressurized carbon dioxide (CO2) in a single processing step. The experiments were conducted at temperatures and pressures in the range 27–37°C and 4–6 MPa, respectively. At 5 MPa, CO2 seemed to have enough affinity to dissolve a portion of dichloromethane (DCM) to assist its evaporation. Under subcritical CO2, electrospun products with hollow core fibers having diameters of 4–16 μm were generated. The results confirmed that the change of operating parameters had a strong influence on the morphologies (crack or hollows) of the electrospun products. This study demonstrated that this process offers the possibility that electrospinning under pressurized CO2 will become an essential and useful method for the generation of polymer structures with hollow interiors. POLYM. ENG. SCI., 56:752–759, 2016. © 2016 Society of Plastics Engineers  相似文献   

18.
A thin layer of highly permeable, nonselective polymer is applied to the surface of an asymmetric membrane to reduce permeability through the membrane pores and defects and to render permeation through the matrix predominant. In environments which contain active moieties, the coating may be swollen and dissolved causing it to lose its effectiveness. The effects of irradiation to induce crosslinking between the hollow fiber membrane and the coating were studied. Fibers were irradiated both before and after coating with polydimethylsiloxane. Radiation dosages at 10, 25, and 50 Mrads were used. The increased stabilities of the crosslinked coating and substrate were reflected by the higher retention of H2/CH4 separation factor after exposure to a solvent (i.e., isopentane) which dissolves the coating. The results also suggest that ionizing radiation also alters the structure and morphology of the dense selective layer on the surface of the styrene/acrylonitrile copolymer hollow fiber.  相似文献   

19.
A polysulfone (PSF) hollow fiber composed of interconnected nanofibers within its wall was employed as a template to deposit with a layer of TiO2 by atomic layer deposition. Direct nitridation of the TiO2-coated PSF hollow fiber at 800 and 1000°C was conducted, and a new hierarchical structure of TiOxN1−x and TiN@nitrogen-doped carbon hollow fibers, respectively, was formed. The PSF fiber served as the source of carbon and was directly transformed to a nitrogen-doped carbon fiber because the shape change was confined by the TiO2 coating. In the meantime, TiOxN1−x or TiN was formed after the nitridation of TiO2. X-ray photoelectron spectrometric analysis indicated that there was no chemical bonding between the nitridized coating and the carbon nanofibers. It implies that the nitridation of TiO2 and carbonization of PSF proceed independently and simultaneously in the nitridation process. Raman spectroscopic analysis also confirmed the formation of graphitic lattice and Ti–N bonding. Electrical measurement indicated that both fibers were highly conductive, with the electrical resistivity in the order of 10−5 Ω m, which is lower than those of amorphous carbon and graphite along the direction perpendicular to the basal plane.  相似文献   

20.
A new cellulose acetate propionate (CAP) polymer has been synthesized and used to prepare high‐performance forward osmosis (FO) membranes. With an almost equal degree of substitution of acetyl and propionyl groups, the CAP‐based dense membranes show more balanced physicochemical properties than conventional cellulose acetate (CA)‐based membranes for FO applications. The former have a lower equilibrium water content (6.6 wt. %), a lower salt diffusivity (1.6×1014 m2 s?1) and a much lower salt partition coefficient (0.013) compared with the latter. The as‐prepared and annealed CAP‐based hollow fibers have a rough surface with an average pore radius of 0.31 nm and a molecular weight cut off of 226 Da. At a transmembrane pressure of 1 bar, the dual‐layer CAP‐CA hollow fibers show a pure water permeability of 0.80 L m?2 h?1 bar?1 (LMH/bar) and a rejection of 75.5% to NaCl. The CAP‐CA hollow fibers were first tested for their FO performance using 2.0 M NaCl draw solution and deionized water feed. An impressive water flux of 17.5 L m?2 h?1 (LMH) and a reverse salt flux of 2.5 g m?2 h?1 (gMH) were achieved with the draw solution running against the active CAP layer in the FO tests. The very low reverse salt flux is mainly resulting from the low salt diffusivity and salt partition coefficient of the CAP material. In a hybrid system combining FO and membrane distillation for wastewater reclamation, the newly developed hollow fibers show very encouraging results, that is, water production rate being 13–13.7 LMH, with a MgCl2 draw solution of only 0.5 M and an operating temperature of 343 K due to the incorporation of bulky propionyl groups with balanced physiochemical properties. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1245–1254, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号