首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The current study explores the effects of second‐order slip and activation energy (AE) on the magnetohydrodynamic and radiative fluid flow caused by a surface with exponential stretching. The binary chemical reaction with mixed convection is considered in this physical model to discover the heat transfer phenomenon. The governing system of equations leads to a set of nonlinear ordinary differential equations by using scaling analysis. The transformed system is calculated computationally by using the most powerful Shooting procedure with the support of MATLAB software. The characteristics of various flow parameters on the governing flow field are exhibited pictorially and deliberated. The results revealed that the coefficient of heat and mass transfer upsurge with growing values of the second‐order slip parameter and skin friction coefficient has a reverse effect on the first‐order slip parameter. The thermal measure of the fluid in the presence of suction and slip conditions is seen to be lesser than that with the nonslip and nonsuction conditions. The heat measure of the fluid augments with the rising buoyancy parameter. The influence of slips coupled with AE is significant in the fluid flow and heat transfer characteristics. The outputs of the current investigation are validated by comparing the Nusselt number with the available results and are found to closely agree as a limiting case.  相似文献   

2.
In thermal processes, the choice of the thermofluid plays an essential role in minimizing entropy generation and thereby improving thermal efficiency. In this study, entropy generation in a viscous hybrid nanofluid described by the Eyring‐Powell model is investigated. The model accounts for the effect of the nanoparticle volume fraction and viscous dissipation on an Eyring‐Powell Cu‐Al2O3/ethylene glycol nanofluid. A similarity solution to the time‐dependent model is found using the Lie group symmetry technique. The bivariate spectral quasi‐linearization method is used for the solution of the self‐similar transport equations. We analyze the effects of the nanoparticle volume fraction, suction/injection, and viscous dissipation on the fluid properties. The skin friction and Nusselt number are determined. A comparison between the Nusselt number of a regular nanofluid and a hybrid nanofluid shows that the hybrid nanofluid has better thermal characteristics compared with the regular nanofluid. The findings show that a decrease in the nanoparticle volume fraction and Eckert number minimizes entropy generation in the system.  相似文献   

3.
The present numerical study reports the chemically reacting boundary layer flow of a magnetohydrodynamic second‐grade fluid past a stretching sheet under the influence of internal heat generation or absorption with work done due to deformation in the presence of a porous medium. To distinguish the non‐Newtonian behaviour of the second‐grade fluid with those of Newtonian fluids, a very popularly known second‐grade fluid flow model is used. The fourth order momentum equation with four appropriate boundary conditions along with temperature and concentration equations governing the second‐grade fluid flow are coupled and highly nonlinear in nature. Well‐established similarity transformations are efficiently used to reduce the dimensional flow equations into a set of nondimensional ordinary differential equations with the necessary conditions. The standard bvp4c MATLAB solver is effectively used to solve the fluid flow equations to get the numerical solutions in terms of velocity, temperature, and concentration fields. Numerical results are obtained for a different set of physical parameters and their behaviour is described through graphs and tables. The viscoelastic parameter enhances the velocity field whereas the magnetic and porous parameters suppress the velocity field in the flow region. The temperature field is magnified for increasing values of the heat source/sink parameter. However, from the present numerical study, it is noticed that the flow of heat occurs from sheet to the surrounding ambient fluid. Before concluding the considered problem, our results are validated with previous results and are found to be in good agreement.  相似文献   

4.
The influence of inconstant electrical conductivity and chemical reaction on the peristaltic motion of non‐Newtonian Eyring‐Prandtl fluid inside a tapered asymmetric channel is investigated. The system is concerned by a uniform external magnetic field. The heat and mass transfer are considered. The problem is controlled mathematically by a system of nonlinear partial differential equations which describe the velocity, temperature, and nanoparticle concentration of the fluid. By means of long wavelength and low Reynolds numbers, our system is simplified. It is explained by using the multi‐step differential transform method as a semi‐analytical technique. The distributions of velocity, temperature, nanoparticle concentration, as well as pressure gradient and pressure rise are obtained as a function of the physical parameters of the problem. The effects of these parameters on these distributions are deliberated numerically and illustrated graphically through a set of figures. The results indicate that the parameters play a significant role in controlling the velocity, temperature, nanoparticle concentration, pressure gradient, and pressure rise.  相似文献   

5.
The unsteady magnetohydrodynamic (MHD) stagnation point flow of micropolar fluid across a vertical stretching surface with second‐order velocity slip is the main concern of the present paper. The influence of electrical energy, temperature‐dependent thermal conductivity, thermal radiation, Joule heating, and heat sink/source is investigated. The basic partial differential equations are changed into ordinary differential equations with the help of appropriate similarity variables and then solved by the fourth‐order Runge‐Kutta–based shooting technique. The impact of physical parameters on the velocity, microrotation, and temperature as well as friction factor, couple stress, and local Nusselt number is thoroughly explained with the support of graphs and tables. The results divulge that the heat source/sink and thermal radiation parameters have a propensity to enhance the fluid temperature. The distribution of velocity is an increasing function of an electric field and unsteadiness parameter. The numerical results are also compared with the results available in the literature.  相似文献   

6.
Variable fluid properties with thermal radiation in an unsteady magnetohydrodynamics free stream incompressible flow over a stretching sheet has been considered. The thermal diffusivity and viscosity of the fluid varies linearly with temperature. The governing partial differential equations are moulded to ordinary differential equations using time-dependent similarity variables and the stream function. RKF technique with shooting method has been implement to find the solution numerically. In the current analysis the impact of unsteadiness, magnetic field, radiative parameter, variable fluid viscosity and thermal diffusivity parameter on heat and flow behavior with the free stream parameter have been studied. Transition point observed in the velocity profiles with an change in unsteadiness parameter and the effect of magnetic field is reduced in the presence of free stram velocity. The velocity and the temperature gradient are computed on the surface and their outcomes with different parameters have been analyzed in the results shown graphically and in tabular form.  相似文献   

7.
In this study, we analyzed three‐dimensional magnetohydrodynamic non‐Newtonian and Newtonian fluid motion, transfer of heat and mass over a stretching surface with Brownian flow, thermophoresis, and Dufour effects. By Runge‐Kutta based shooting method, the transformed governing equations are solved numerically. With the facilitate of tables and graphs, momentum, energy and mass profiles along with the skin friction coefficient, local Nusselt number, and Sherwood number are analyzed in the influence of nondimensional parameters. It is established that enhance the stretching ratio parameter improves the energy and concentration transfer rate. The transfer of energy and concentration rate in the Newtonian fluid is relatively low while compared with non‐Newtonian fluid.  相似文献   

8.
Microorganisms play a vital role in understanding the ecological system. The motions of micororganisms are self‐propelled while the impact of thermophoresis and Brownian motion property of nanoparticle shows more challenges in biotechnological and medical applications. The present problem is based on the understanding of double‐dispensed bioconvection for a Casson nanofluid flow over a stretching sheet. Suction phenomenon is introduced at the surface of the stretching sheet along with the convective boundary condition. The convection and movement of the microorganisms are assisted by an applied magnetic field, nonlinear thermal radiation, and first‐order chemical reaction. The governing equations are highly coupled and thus we used the spectral quasilinearization method to solve the governing equations. The study of the residual errors on the systemic parameters had given a confidence with the present results. The final outcomes are displayed through graphs and tables. The thermal dispersion coefficient shows a positive response in the temperature while a similar response is observed for the concentration with solutal dispersion coefficient. The response is reversible for the heat transfer rate at the surface with thermal dispersion coefficient. The density of the motile microorganism at the surface decreases with increase in the Casson number, thermal dispersion coefficient, and solute dispersion coefficient, while an opposite phenomenon was observed with increase in the density ratio of the motile microorganism.  相似文献   

9.
The current endeavor examines the convective heat transfer characteristics on magnetohydrodynamic stagnation point flow of micropolar fluid past an exponential curved surface. The flow is supposed to be laminar and time‐independent. The influence of radiation, irregular heat source/sink, Joule heating, and variable thermal conductivity are supposed. Suitable similarity renovations are considered to transform the original partial differential equations as ordinary ones and then resolved by shooting and fourth‐order Runge–Kutta methods. Graphs are drawn to inspect the impacts of sundry nondimensional parameters on the distributions of velocity, microrotation, and temperature. We detect that there is an escalation in temperature with Eckert number and variable heat source/sink parameters. Also, it is motivating to comment that Biot number is an increasing function of local Nusselt number.  相似文献   

10.
In the current communication, three-dimensional Williamson fluid flow past a bidirectional inclined stretching plate with novel Hall current, nonuniform heat source/sink, and nth-order chemical reaction features are investigated. Rosseland's diffusion model is defined for the radiation heat transfer. The nonlinear governing derivative equations satisfying the flow are transmuted to the coupled derivative equations by employing the local similarity quantities and then solved numerically through the Runge–Kutta–Fehlberg method utilizing the shooting quadrature. An inclusive analysis is reported via graphs for the flow rate field, temperature, and concentration distributions for different evolving terms of immense concern. Wall dragging effect and wall heat gradient and wall concentration gradient have been examined, plotted, and described. The detailed geometry reveals that dimensionless velocity field is monotonically rising as the Hall parameter rises. The chemical reaction concentration for the Williamson fluid is enhanced with expanding values of the magnetic field parameter. Transitional values of wall stress components upturn with an increase in Hall parameter while the Williamson term is boosted. Nusselt number is reduced as the Williamson term rises and the Sherwood number enhances with a rising chemical reaction term. The results are verified for limiting cases by comparing with various investigations and found to have excellent accuracy.  相似文献   

11.
The present work focuses on a two‐dimensional steady incompressible stagnation point flow of a Jeffery fluid over a stretching sheet. The Cattaneo‐Christov heat flux model is incorporated into this study. Simulation is conducted via the Runge‐Kutta fourth‐order cum shooting method for the transformed system of nonlinear equations. The influence of the governing parameters on the dimensionless velocity, temperature, skin friction, streamlines, and isotherms is incorporated. A significant outcome of the current investigation is that an increase in the relaxation time parameter uplifts temperature; however, a gradual decrease is observed in the velocity field. Another important outcome of the present analysis is that the momentum boundary layer augments due to an increase in the Deborah number; however, a decrease is observed in the temperature. Furthermore, it is also observed that the skin friction coefficient escalates with an increase in the relaxation time parameter for the assisting flow, but a reverse trend is observed for the opposing flow.  相似文献   

12.
The present model concentrates on entropy generation on a steady incompressible flow of a Casson liquid past a permeable stretching curve surface through chemical reaction and magnetic field effects. The exponential space-dependent heat source cum heat and mass convective boundary conditions are accounted for. The resulting nonlinear boundary layer model is simplified by the transformation of similarity. Chebyshev spectral technique is involved for obtaining numerical results of the converted system of the mathematical models. Behavior of the determining thermo-physical parameters on the profiles of velocity, temperature, concentration, skin friction, heat, mass transfer rate, rate of entropy generation, and finally the Bejan number are presented. The major point of the present investigation show that the curvature term weakens the mass transfer profile as the fluid temperature reduces all over the diffusion regime. A decrease in heat generation strengthens the species molecular bond, which prevents free Casson particle diffusion. Furthermore, the mass transfer field diminishes in suction and injection flow medium.  相似文献   

13.
In this study, a mixed convection flow over a nonlinearly stretching sheet of variable thickness is examined. Governing equations are modeled and transformed into dimensionless forms by utilizing dimensionless variables. For further investigation, dimensionless, coupled nonlinear differential equations with suitable boundary conditions are numerically solved using the Matlab built‐in function bvp5c tool, and analytical solutions are also computed using the homotopy analysis method. A comparative study is carried out to check the efficiency and accurateness of the proposed solution methodologies. Convergence of the derived series solutions is carefully checked. The impact of wall thickness parameter, velocity index parameter, Prandtl number, and mixed convection parameter on nondimensional velocity, temperature, skin friction coefficient, and local Nusselt number is examined. The novelty of this examination is that the dimensionless equations are self‐similar in the presence of mixed convection. These self‐similar equations are acquired by establishing a relationship between velocity and temperature power index parameters, and similarity solutions exist only for a particular form of variable surface temperature.  相似文献   

14.
The influence of simultaneously applied ramped boundary conditions on unsteady magnetohydrodynamic natural convective motion of a second‐grade fluid is investigated and analyzed in this study. The motion of the fluid is considered near an infinite upright plate that is nested in a porous medium subject to nonlinear thermal radiation effects. The Laplace transformation technique is utilized to acquire the exact solutions of momentum and energy equations. To effectively examine the rate of heat transfer and shear stress, the Nusselt number and skin friction coefficient are also established. The outcomes of mathematical computations are elucidated through tables and figures to highlight some physical aspects of the problem. Some limiting models of the present problem are also deduced and presented. On comparison, it is observed that the fluid exhibits lower temperature and velocity profiles under ramped boundary conditions. It is also found that wall shear stress can be controlled by choosing large values of the magnetic parameter (M) and Prandtl number (Pr). In addition, the heat transfer rate specifies inverse trends for growing values of radiation parameter (Nr) and Prandtl number (Pr), while it increases rapidly under a ramped surface condition and decreases slowly under a constant surface condition.  相似文献   

15.
This investigation deals with the effects of nonlinear slip, nonlinear thermal radiation, and non‐Newtonian flow parameters on heat transfer of an incompressible magnetohydrodynamic steady flow of an Oldroyd 8‐constant fluid through two parallel infinite plates with convective cooling. The Rosseland approximation is adopted to simulate the radiation effects. Heat exchange with the surrounding at the surfaces is assumed to obey Newton's law of cooling. The system of coupled and highly nonlinear ordinary differential equations governing the model is solved numerically using the method of weighted residual. The combined effects of non‐Newtonian flow parameters, velocity slip parameter, magnetic field parameter, Biot numbers, thermal radiation on the fluid velocity, temperature distributions, skin friction, and the Nusselt number are presented graphically and discussed. It is found that the velocity slip has an increasing effect on the fluid velocity and temperature profiles. For larger values of the thermal radiation parameter, the temperature profile and the Nusselt number are noticed to be increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号