首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Petroleum-based fuels is a finite resource that is rapidly depleting. Consequently, petroleum reserves are not sufficient enough to last many years. In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for direct injection (DI) diesel engines. The experimental work has been carried out to estimate the combustion characteristics of a single-cylinder, four-stroke, DI diesel engine fuelled with corn oil methyl ester (COME) and diesel blends. The COME was preheated to temperatures namely 50°C, 70°C and 90°C before it was supplied to the engine. The optimised preheated temperature of 70°C was chosen based on the higher brake thermal efficiency and lower specific fuel consumption. The performance, emission and combustion characteristics are evaluated by running the engine with COME and diesel blends at this preheated temperature. In this paper, the combustion characteristics are only discussed. The combustion characteristics such as ignition delay, maximum rate of pressure, heat release rate, cumulative heat release rate, mass fraction burned and combustion duration of COME methyl ester and diesel were evaluated and compared with neat diesel. The rate of pressure rise and maximum combustion pressure inside the cylinder were high for COME blends compared with neat diesel. The heat release rate of diesel is higher compared with COME blends. The ignition delay and combustion duration are decreased for COME blends compared with neat diesel. The cumulative heat release rate and mass fraction burnt of COME blends are higher than neat diesel.  相似文献   

2.
The aim of our project is to experimentally access the practical applications of ethanol and blending it with some lubricating oils in a direct injection compression ignition engine. This replacement of conventional diesel with ethanol requires some of the properties of ethanol to be altered. In order to increase the lubricating property of ethanol, it is blended with some lubricating oils. Some of the preferred lubricating oils are methyl esters of Jatropha oil, Pongamia oil, etc. Ethanol is blended with these lubricating oils to reduce the corrosive property of ethanol. The different fuel blends [Pongamia–ethanol (50–50) and Jatropha–ethanol (50–50)] are used in the direct injection CI engine, the combustion characteristics are calculated and they are compared with diesel and a perfect blend is analysed. The engine combustion parameters such as peak pressure, heat release rate (HRR) and cumulative heat release rate were computed. The combustion analysis revealed that the early rate of pressure rise causes the cylinder pressure to rise early in the case of alternate fuels with a resulting lower rate of pressure rise and peak pressure. However, HRR and cumulative HRR show a maximum for Pongamia–ethanol (50–50) when compared with the neat diesel fuel.  相似文献   

3.
The current work is to investigate the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca (BA) biodiesel and compare those with the performance and combustion characteristics of palm biodiesel, sesame biodiesel,rapeseed biodiesel, soybean biodiesel and diesel fuel. In this study, only 10% of each biodiesel (BA10, PALM10, SESAME10, RAPESEED10 and SOYBEAN10) was tested in a diesel engine. The physical properties of all the fuel samples are mentioned and compared with ASTM standards. The test rig consists of a single cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine, which was used to evaluate their performance at a measured torque. All biodiesel fuel samples reduce brake power and brake thermal efficiency and increase brake-specific fuel consumption rate than diesel fuel. Combustion characteristics results indicated that the blended fuel samples performed with a significant reduction in terms of cylinder pressure and heat release rate compared with diesel fuel apart from diesel pressure. Among the biodiesel-blended fuel samples, BA10 showed better performance in terms of brake power, brake-specific fuel consumption and brake thermal efficiency and cylinder pressure and heat release rate in terms of combustion characteristics compared with D100.  相似文献   

4.
In this investigation, biogas (BG) was used as an alternative fuel in a single-cylinder, four-stroke, air-cooled, direct injection (DI) diesel engine that was operated on a dual fuel mode. Biogas was produced from a non-edible seed de-oiled cake-pongamia pinnata (Karanja), which was collected from the biodiesel industries. The BG was inducted along with the air in suction of the engine at four different flow rates varying from 0.3?kg/h to 1.2?kg/h in steps of 0.3?kg/h. The investigation results revealed that BG inducted at a flow rate of 0.9?kg/h gives better combustion characteristics of engine behaviour than those of other flows throughout the engine operation. The ignition delay (ID) and combustion duration of the engine run by dual fuel operation at a BG flow rate of 0.9?kg/h were found to be longer by about 2 °CA and 2.9 °CA, respectively, in comparison with diesel at full load. The cylinder peak pressure was found to be overall higher by about 11?bar than that of diesel at full load.  相似文献   

5.
ABSTRACT

The objective of this study is to investigate the effect of compression ratio on combustion characteristics of diesel engine with waste cooking oils methyl ester–diesel blends as fuel. The DI engine fuelled with Waste Cooking Rice Bran Methyl Ester (WCRBME) and Waste Cooking Cotton Seed Oil Methyl Ester (WCCSME) prepared by the transesterification process was investigated for its combustion and then compared with petroleum-based diesel fuel (PBDF). Experiments were conducted at a constant speed of 1500?rpm and maintained at a full-load condition for the compression ratio of 17:1, 18:1 and 19:1 and blending ratios B20, B40, B60 and B80.The fuel properties were strictly measured as per ASTM testing methods and these observed properties are verified to be well within the limits of ASTM D 6751 biodiesel standards. The combustion characteristics of heat release rate and combustion pressure of WCRBME & WCCSME were found closer to diesel.  相似文献   

6.
This paper assesses the effects of dimethoxymethane (DMM) blends on combustion characteristics, fuel economy, emissions and engine’s power. Experiments were carried out on a single-cylinder, four-stroke compression ignition engine of direct injection with volume fractions of DMM blends of 5%, 10%, 15% and 20% v/v starting from base diesel. Experimental results suggest that 20% DMM blended with diesel achieved better performance in terms of efficiency as well as in exhaust emissions. Carbon monoxide emission levels, hydrocarbon and smoke are reduced considerably with DMM additions, while the oxides of nitrogen emission in exhaust increase due to higher in-cylinder temperature. The oxygen content in the DMM blends plays a greater role in the combustion process compared to neat diesel fuel. The combustion profile was smoother, and no knocking was experienced while operating with DMM blends. Also, it is observed that addition of DMM in diesel shortens the ignition delay and total combustion duration.  相似文献   

7.
In this paper, bio-diesel was prepared from watermelon seed oil by using transesterification processes. The performance, emission and combustion characteristics of the various bio-diesel and diesel blends (B20–B80 and B100) are compared with those of the diesel. The experimental result indicates that owing to a lower heating value of bio-diesel, the brake-specific fuel consumption increased and the brake thermal efficiency decreased. However, bio-diesel and its blends reduced carbon monoxide and hydrocarbon, while the oxides of nitrogen and smoke slightly increased. The combustion analysis proved that increasing bio-diesel blend ratio decreases the cylinder pressure and heat release rate when compared with base diesel.  相似文献   

8.
In this study, hydrocarbon fuel (HCF) was derived from waste transformer oil through a traditional base-catalysed trans-esterification process. The experimental investigations using its blends of 25%, 50%, 75%, 100% and diesel fuel were carried out separately. The HCF obtained from waste transformer oil is used in a direct injection (DI) diesel engine without any engine modification to evaluate its performance, emission and combustion characteristics. The results indicate that the engine operating on test fuel blends shows a marginal increase in brake thermal efficiency (BTE) with a significant reduction in smoke. Nitrous oxides (NOx) emission was slightly higher for test fuel blends than for diesel. The results show that at maximum load conditions, 25% HCF reduces carbon monoxide, smoke and hydrocarbon emission by 50%, 31% and 10%, respectively, whereas 50% HCF shows a greater BTE than other blends and is 12% higher than that of the diesel fuel. The combustion characteristics of fuel blends closely followed those of standard diesel.  相似文献   

9.
This paper describes an application of fuzzy logic principle for predicting the internal combustion engine performance, emission and combustion characteristics using fish oil biodiesel. Experimental investigations on a single cylinder, constant speed, direct injection diesel engine were carried out under variable load conditions. The performance, emission and combustion characteristics such as brake thermal efficiency, hydrocarbon, exhaust gas temperature, oxides of nitrogen (NOx), carbon monoxide, smoke, carbon dioxide, ignition delay, combustion delay and maximum rate of pressure rise were considered. Engine performance was measured using an exhaust gas analyser, smoke metre, piezoelectric pressure transducer and crank angle encoder for different fuel blends and engine load conditions. The obtained data were recorded for each experiment and associated data used to develop a multiple inputs and multiple outputs fuzzy logic model. The developed model produced idealised results with the correlation coefficients of 0.988–0.999 and root mean square error, and was found to be useful for predicting the engine performance characteristics with limited number of available data.  相似文献   

10.
Experimental work had been carried out to analyse the effect of ethanol on the performance, emission and combustion characteristic of vegetable oil–diesel blend (50% vol. rapeseed oil and 50% vol. diesel fuel). The vegetable oil–diesel–ethanol blended fuels were prepared by using microemulsification technique and the main properties were measured. The results showed that, with the increase in ethanol volume fraction in the blends, the viscosity and density were decreased and close to those of diesel fuel. The combustion started later; the peak cylinder pressure, peak heat release rate varied significantly under different operating conditions and the corresponding crank angles of the peak values were retarded. There were slightly higher brake-specific fuel consumptions. Smoke and nitrogen oxide emissions were observed to reduce, but carbon monoxide and hydrocarbon emissions were found slightly higher with the increase of ethanol volume fraction under all ranges of engine operating conditions.  相似文献   

11.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

12.
An investigational research is carried out to found the performance and emission characteristics of a direct injection (DI) diesel engine with cerium oxide nanoparticles additives in diesel and biodiesel blends. Mahua methyl ester was produced by transesterification and blended with diesel. Cerium oxide nanoparticles of 50 and 100?ppm in proportion are subjected to high-speed mechanical agitation followed by ultra-sonication. The experimentations was conducted on a single cylinder DI diesel engine at a constant speed of 1500?rpm using different cerium-oxide (CeO2)-blended biodiesel fuel (B20?+?50?ppm, B20?+?100?ppm, B50?+?50?ppm and B50?+?100?ppm) and the outcomes were compared with those of neat diesel and Mahua biodiesel blend (B20 and B50). The experimental results indicated that brake thermal efficiency of B20?+?100?ppm cerium oxide was increased by 1.8 with 1% betterment in specific fuel consumption. Emissions of hydrocarbon and carbon monoxide were reasonably lower than Diesel fuel.  相似文献   

13.
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NOx reduces slightly but the reduction is not statistically significant, while NO2 increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NOx emissions is small.  相似文献   

14.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   

15.
Rapid depletion of fossil fuel and continuous increase in gasoline prices have stimulated the search of alternative fuels. This paper deals with the prediction of engine performance, emission and combustion characteristics of compression ignition engine fuelled with fish oil biodiesel using artificial neural network (ANN). Experimental investigations are carried out in a single cylinder constant speed direct injection diesel engine under variable load conditions at different injection timings?210, 240 and 270 bTDC. The performance, combustion and emission characteristics are measured using an exhaust gas analyser, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends and engine load conditions. For training the neural network, feed-forward back propagation algorithm is used. The developed ANN model predicts the performance, combustions and exhaust emissions with a correlation coefficients (R) of 0.97–0.99 and a mean relative error of 0.62–4.826%. The root mean square errors are found to be low. The developed model has found to predict accurately the engine performance, combustion and emission parameters at different injection timings.  相似文献   

16.
This paper investigates the combustion, performance and emission characteristics of a single-cylinder diesel engine using neat biodiesel (Pongamia methyl ester) with two different blends (10% and 15% diethyl ether [DEE]) at different load conditions. The measured values of brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO) and smoke were calculated and analysed and compared with diesel fuel. The results showed that a significant reduction in NO and smoke emissions for neat biodiesel with 15% DEE blend compared with neat biodiesel at full load conditions. The peak pressure and heat release rate were decreased, and maximum rate of pressure rise and ignition delay were also decreased with DEE blends at full load. On the whole, it is concluded that the biodiesel with 15% DEE blend showed better results with respect to efficiency and emissions point of view compared with biodiesel.  相似文献   

17.
Vateria indica Linn seeds were found to contain nearly 19% of oil/fat content. This fat is converted into biodiesel by a novel method by the authors at the biodiesel preparation facility at NITK, Surathkal, India. As biodiesel is a promising alternative fuel for petro diesel in compression ignition (CI) engines, this biofuel is tested in a single-cylinder diesel engine. The objective of this work is to find combustion, performance and emission characteristics of a CI engine with diesel and blends of V. indica biodiesel at 180, 200 and 220?bar injection pressures. Blending is done in volumetric ratios of 10%, 15%, 20% and 25% of biodiesel with diesel which are called as B10, B15, B20 and B25. The idea of increasing fuel injection pressure is to promote atomisation and full penetration into the combustion chamber leading to better combustion. Blend B25 showed best thermal efficiency of the order of 33.03% and the least NOX emission of 1047?ppm at 220?bar injection pressure at 75% load.  相似文献   

18.
As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. A new type of biofuel, chicha oil biodiesel, is introduced in this work for the purpose of fuelling diesel engine. Chicha oil was transesterified with methanol using potassium hydroxide as catalyst to obtain chicha oil methyl ester (COME). The calorific value of this biodiesel is lower, when compared to that of diesel. The COME and their blends of 20%, 40%, 60% and 80% with diesel were tested in a single cylinder, four stroke, direct injection diesel engine and the performance, combustion and emission results were compared with diesel. The test result indicates that there is a slight increase in brake thermal efficiency and decrease in brake-specific fuel consumption for all blended fuels when compared to that of diesel fuel. The use of biodiesel resulted in lower emissions of CO and HC and increased emissions of CO2 and NOx. The experimental results proved that the use of biodiesel (produced from chicha oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

19.
The performance, exhaust emission and combustion analyses of a single cylinder spark ignition engine fuelled with extended range of ethanol–petrol blends were carried out successfully at full load conditions. Ethanol produced from raffia trunks was blended with petrol at different proportions by volume. In order to establish a baseline for comparison, the engine was first run on neat petrol. The engine performance parameters (engine torque, brake power, brake specific fuel consumption, brake mean effective pressure and brake thermal efficiency), exhaust emission parameters (CO, HC, CO2 and O2 emissions) and combustion parameters were determined for each blend of fuel at different engine speeds. The test results interestingly revealed that the addition of ethanol to petrol causes an improvement in combustion characteristics and significant reduction in exhaust emissions which in turn improved engine performance. In all, ethanol and its blends with petrol exhibited performance characteristics trends similar to that of petrol thus confirming them as suitable alternative fuels for spark ignition engines.  相似文献   

20.
This article experimentally investigates the effect of spark timing on performance and emission characteristics of high-speed spark-ignition (SI) engine operated with different hydrogen–gasoline fuel blends. For this purpose, the conventional carbureted SI engine is modified into an electronically controllable engine, wherein an electronically controllable unit was used to control the ignition timings and injection duration of gasoline. The tests were conducted with different spark timings at the wide open throttle position and 3000 rpm engine speed. The experimental results demonstrated that brake mean effective pressure and engine brake thermal efficiency increased first and then decreased with the increase in spark advance. Peak cylinder pressure, temperature and heat release rate were increased until 20% hydrogen addition and with increased spark timings. NOx emissions were continuously increased with the increment in both spark timings and hydrogen addition, whereas hydrocarbon emissions were increased with spark timings but decreased with hydrogen addition. CO emissions were reduced with the increase in spark timing and hydrogen addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号