首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current economic development in tropical regions (especially in India, China, and Brazil) is putting tremendous pressure on tropical forest cover. Some of the dominant and economically important species are planted at large scale in these countries. Teak and bamboo are two important species of tropical regions because of their commercial and conservation values. Accurate estimates of foliar chemistry can help in evaluating the health status of vegetation in these regions. An attempt has been made to derive canopy level estimation of chlorophyll and leaf area index (LAI) for these species utilizing Hyperion data. Partial least square (PLS) regression analysis was carried out to identify the correlation between measured parameters (chlorophyll and LAI) and Hyperion reflectance spectra. PLS regression identified 600–750 nm as a sensitive spectral region for chlorophyll and 1000–1507 nm for LAI. The PLS regression model tested in this study worked well for the estimation of chlorophyll (R 2 = 0.90, root mean square error (RMSE) = 0.182 for teak and R 2 = 0.84, RMSE = 0.113 for bamboo) and for the estimation of LAI (R 2 = 0.87, RMSE = 0.425). The lower predictive error obtained indicates the robustness of the data set and also of the applicability of the PLS regression analysis. Wavelengths recognized by the PLS regression model were utilized for the development of vegetation indices for estimating chlorophyll and LAI. Predictive performances of the developed simple ratios (SRs) were evaluated using the cross-validation method. SR 743/692 gave the best results for the prediction of chlorophyll with the leave-one-out cross-validation (LOO-CV) method (R 2 = 0.73, RMSE = 0.28 for teak and R 2 = 0.71, RMSE = 0.15 for bamboo). The normalized difference ratio (ND 1457/1084) gave the best results for the prediction of LAI with LOO-CV (R 2 = 0.66, RMSE = 0.57). Ratios developed here can be tested for teak and bamboo cover spread in tropical regions with similar environmental conditions.  相似文献   

2.
Suspended particulate matter (SPM) is a dominant water constituent of case-II waters, and SPM concentration (CSPM) is a key parameter describing water quality. This study, using Landsat 8 Operational Land Imager (OLI) images, aimed to develop the CSPM retrieval models and further to estimate the CSPM values of Dongting Lake. One Landsat 8 OLI image and 53 CSPM measurements were employed to calibrate Landsat 8-based CSPM retrieval models. The CSPM values derived from coincident Landsat 8 OLI and Moderate Resolution Imaging Spectroradiometer (MODIS) images were compared to validate calibrated Landsat 8-based CSPM models. After the best stable Landsat 8-based CSPM retrieval model was further validated using an independent Landsat 8 OLI image and its coincident CSPM measurements, it was applied to four Landsat 8 OLI images to retrieve the CSPM values in the South and East Dongting Lake. Model calibration results showed that two exponential models of the red band explained 61% (estimated standard error (SE) = 7.96 mg l–1) and 67% (SE = 6.79 mg l–1) of the variation of CSPM; two exponential models of the red:panchromatic band ratio obtained 81% (SE = 5.48 mg l–1) and 77% (SE = 4.96 mg l–1) fitting accuracy; and four exponential and quadratic models of the infrared band explained 72–83% of the variation of CSPM (SE = 5.18–5.52 mg l–1). By comparing the MODIS- and Landsat 8-based CSPM values, an exponential model of the Landsat 8 OLI red band (CSPM = 1.1034 × exp(23.61 × R)) obtained the best consistent CSPM estimations with the MODIS-based model (r = 0.98, p < 0.01), and its further validation result using an independent Landsat 8 OLI image showed a significantly strong correlation between the measured and estimated CSPM values at a significance level of 0.05 (r = 0.91, p < 0.05). The CSPM spatiotemporal distribution derived from four Landsat 8 images revealed a clear spatial distribution pattern of CSPM in the South and East Dongting Lake, which was caused by natural and anthropogenic factors together. This study confirmed the potential of Landsat 8 OLI images in retrieving CSPM and provided a foundation for retrieving the spatial distribution of CSPM accurately from this new data source in Dongting Lake.  相似文献   

3.
In this study, an arid grassland was selected, and the chlorophyll content of the leaf and canopy level was estimated based on Landsat-8 Operational Land Imager (OLI) data using the PROSAIL radiative transfer (RT) model. Two vegetation indices (green chlorophyll index, CIgreen, and greenness index, G) were selected to estimate the leaf and canopy chlorophyll content (LCC and CCC). By analysing the effect of soil background on the two indices, the LCC was divided into low and moderate-to-high levels. A different combination of the two indices was adopted at each level to improve the chlorophyll content estimation accuracy. The results suggested that the chlorophyll content estimated using the proposed method yielded a higher accuracy with coefficient of determination, R2 = 0.84, root-mean-square error, RMSE = 9.67 μg cm?2 for LCC and R2 = 0.85, RMSE = 0.43 g m?2 for CCC than that using CIgreen alone with R2 = 0.62, RMSE = 20.04 μg cm?2 for LCC and R2 = 0.85, RMSE = 0.71 g m?2 for CCC. The results also confirmed the validity of this approach to estimate the chlorophyll content in arid areas.  相似文献   

4.
Progress in deriving land surface biophysical parameters in a spatially explicit manner using remotely sensed data has greatly enhanced our ability to model ecosystem processes and monitor crop development. A multitude of satellite sensors and algorithms have been used to generate ready-to-use maps of various biophysical parameters. Validation of these products for different vegetation types is needed to assess their reliability and consistency. While most of the current satellite biophysical products have spatial resolution of one kilometre, a recent effort utilizing data from the Medium Resolution Imaging Spectrometer (MERIS) provided leaf area index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and other canopy parameters in a resolution as fine as 300 m over the European continent. This resolution would be more appropriate for application at the regional scale, particularly for crop monitoring. This higher-resolution MERIS product has been evaluated in a limited number of studies to date. This article aims to validate LAI and FAPAR from the MERIS 10-day composite BioPar BP-10 product over winter wheat fields in northeast Bulgaria. The ground measurements of LAI and FAPAR were up-scaled and 30 m resolution reference raster layers were created using empirical relationships with Landsat TM (RMSE = 0.06 and RMSE = 0.22 for FAPAR and LAI, respectively). MERIS FAPAR and LAI were found to have significant correlation with FAPAR and LAI from the reference raster layers (R2 = 0.84 and R2 = 0.78, respectively). When MERIS Green LAI was calculated (incorporating the fraction of vegetation and brown vegetation cover from the BioPar BP-10 product), better correspondence with LAI values from the reference raster layer was achieved, with RMSE and bias reduced by 30–35%. The results from this study confirm the findings of previous validations showing that MERIS Green LAI tends to overestimate LAI values lower than 1. As a conclusion of the study, the BioPar BP-10 product was found to provide reliable estimates of FAPAR and acceptably accurate estimates of LAI for winter wheat crops in North-East Bulgaria.  相似文献   

5.
Leaf area index (LAI) is a key vegetation biophysical parameter and is extensively used in modelling of phenology, primary production, light interception, evapotranspiration, carbon, and nitrogen dynamics. In the present study, we attempt to spatially characterize LAI for natural forests of Western Ghats India, using ground based and Landsat-8 Operational Land Imager (OLI) sensor satellite data. For this, 41 ground-based LAI measurements were carried out across a gradient of tropical forest types, viz. dry, moist, and evergreen forests using LAI-2200 plant canopy analyser, during the month of March 2015. Initially, measured LAI values were regressed with 15 spectral variables, including nine spectral vegetation indices (SVIs) and six Landsat-8 surface reflectance (ρ) variables using univariate correlation analysis. Results showed that the red (ρred), near-infrared (ρNIR), shortwave infrared (ρSWIR1, ρSWIR2) reflectance bands (R2 > 0.6), and all SVIs (R2 > 0.7) except simple ratio (SR) have the highest and second highest coefficient of determination with ground-measured LAI. In the second step, to select significant (high R2, low root mean square error (RMSE), and p-level < 0.05) SVIs to determine the best representative model, stepwise multiple linear regression (SMLR) was implemented. The results indicate that the SMLR model predicted LAI with better coefficient of determination (R2 = 0.83, RMSE = 0.78) using normalized difference vegetation index, enhanced vegetation index, and soil-adjusted vegetation index variables compared to the univariate approach. The predicted SMLR model was used to estimate a spatial map of LAI. It is desirable to evaluate the stability and potentiality of regional LAI models in natural forest ecosystems against the operationally accepted Moderate Resolution Imaging Spectroradiometer (MODIS) global LAI product. To do this, the Landsat-8 pixel-based LAI map was resampled to 1 km resolution and compared with the MODIS derived LAI map. Results suggested that Landsat-8 OLI-based VIs provide significant LAI maps at moderate resolution (30 m) as well as coarse resolution (1 km) for regional climate models.  相似文献   

6.
This article describes the results obtained by an existing campaign in which in situ spectroradiometric measurements using a GER1500 field spectroradiometer, Secchi disk depth, and turbidity measurements (using a portable turbidity meter) were acquired at Asprokremmos Reservoir in Paphos District, Cyprus. Field spectroradiometric and water quality data span 18 sampling campaigns during the period May 2010–October 2010. By applying several regression analyses between ‘In-Band’ mean reflectance values against turbidity values for all spectral bands corresponding to Landsat TM/ETM+ (Bands 1 to 4) and CHRIS/PROBA (Bands A1 to A62), the highest correlation was found for Landsat TM/ETM+ Band 3 (R2 = 0.85) and for CHRIS/PROBA Bands A30 to A32 (R2 = 0.90).  相似文献   

7.
The aim of this study was to develop a robust methodology to estimate pasture biomass across the huge land surface of Mongolia (1.56 × 106 km2) using high-resolution Landsat 8 satellite data calibrated against field-measured biomass samples. Two widely used regression models were compared and adopted for this study: Partial Least Squares (PLS) and Random Forest (RF). Both methods were trained to predict pasture biomass using a total of 17 spectral indices derived from Landsat 8 multi-temporal satellite imagery as predictor variables. For training, reference biomass data from a field survey of 553 sites were available. PLS results showed a satisfactory correlation between field measured and estimated biomass with coefficient of determination (R2) = 0.750 and Root Mean Square Error (RMSE) = 101.10 kg ha?1. The RF regression gave similar results with R2 = 0.764, RMSE = 98.00 kg ha?1. An examination of feature importance found the following vegetation indices to be the most relevant: Green Chlorophyll Index (CLgreen), Simple Ratio (SR), Wide Dynamic Range Vegetation Index (WDRVI), Enhanced Vegetation Index EVI1 and Normalized Difference Vegetation Index (NDVI) indices. With respect to the spectral reflectances, Red and Short Wavelength Infra-Red2 (SWIR2) bands showed the strongest correlation with biomass. Using the developed PLS models, a spatial map of pasture biomass covering Mongolia at a spatial resolution of 30 m was generated. Our study confirms the high potential of RF and PLS regression (PLSR) models to predict pasture biomass. The computationally simpler PLSR model is preferred for applications involving large regions. This method can be implemented easily, provided that sufficient reference data and cloud-free observations are available.  相似文献   

8.
Leaf area index (LAI) is among the vegetation parameters that play an important role in climate, hydrological and ecological studies, and is used for assessing growth and expansion of vegetation. The main objective of this study was to develop a methodology to map the LAI distribution of birch trees (Betula pendula) in peatland ecosystems using field-based instruments and airborne-based remote-sensing techniques. The developed mapping method was validated using field-based LAI measurements using the LAI-2000 instrument. First vegetation indices, including simple ratio (SR), normalized difference vegetation index (NDVI), and reduced simple ratio (RSR), were derived from HyMap data and related to ground-based measurements of LAI. LAI related better with RSR (R2 = 0.68), followed by NDVI (R2 = 0.63) and SR (R2 = 0.58), respectively. Areas with birch were identified using Spectral Angle Mapper (SAM) to classify the image into 11 end members of dominant species including bare soil and open water. Next, the relationship between LAI and RSR was applied to areas with birch, yielding a birch LAI map. Comparison of the map of the birch trees and field-based LAI data was done using linear regression, yielding an R2 = 0.38 and an RMSE = 0.25, which is fairly accurate for a structurally highly diverse field situation. The method may prove an invaluable tool to monitor tree encroachment and assess tree LAI in these remote and poorly accessible areas.  相似文献   

9.
Accurate production of regional burned area maps are necessary to reduce uncertainty in emission estimates from African savannah fires. Numerous methods have been developed that map burned and unburned surfaces. These methods are typically applied to coarse spatial resolution (1 km) data to produce regional estimates of the area burned, while higher spatial resolution (<30 m) data are used to assess their accuracy with little regard to the accuracy of the higher spatial resolution reference data. In this study we aimed to investigate whether Landsat Enhanced Thematic Mapper (ETM+)‐derived reference imagery can be more accurately produced using such spectrally informed methods. The efficacy of several spectral index methods to discriminate between burned and unburned surfaces over a series of spatial scales (ground, IKONOS, Landsat ETM+ and data from the MOderate Resolution Imaging Spectrometer, MODIS) were evaluated. The optimal Landsat ETM+ reference image of burned area was achieved using a charcoal fraction map derived by linear spectral unmixing (k = 1.00, a = 99.5%), where pixels were defined as burnt if the charcoal fraction per pixel exceeded 50%. Comparison of coincident Landsat ETM+ and IKONOS burned area maps of a neighbouring region in Mongu (Zambia) indicated that the charcoal fraction map method overestimated the area burned by 1.6%. This method was, however, unstable, with the optimal fixed threshold occurring at >65% at the MODIS scale, presumably because of the decrease in signal‐to‐noise ratio as compared to the Landsat scale. At the MODIS scale the Mid‐Infrared Bispectral Index (MIRBI) using a fixed threshold of >1.75 was determined to be the optimal regional burned area mapping index (slope = 0.99, r 2 = 0.95, SE = 61.40, y = Landsat burned area, x = MODIS burned area). Application of MIRBI to the entire MODIS temporal series measured the burned area as 10 267 km2 during the 2001 fire season. The char fraction map and the MIRBI methodologies, which both produced reasonable burned area maps within southern African savannah environments, should also be evaluated in woodland and forested environments.  相似文献   

10.

The accurate estimation of soil dispersivity (α) is required for characterizing the transport of contaminants in soil. The in situ measurement of α is costly and time-consuming. Hence, in this study, three soft computing methods, namely adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and gene expression programming (GEP), are used to estimate α from more readily measurable physical soil variables, including travel distance from source of pollutant (L), mean grain size (D 50), soil bulk density (ρ b), and contaminant velocity (V c). Based on three statistical metrics [i.e., mean absolute error, root-mean-square error (RMSE), and coefficient of determination (R 2)], it is found that all approaches (ANN, ANFIS, and GEP) can accurately estimate α. Results also show that the ANN model (with RMSE = 0.00050 m and R 2 = 0.977) performs better than the ANFIS model (with RMSE = 0.00062 m and R 2 = 0.956), and the estimates from GEP are almost as accurate as those from ANFIS. The performance of ANN, ANFIS, and GEP models is also compared with the traditional multiple linear regression (MLR) method. The comparison indicates that all of the soft computing methods outperform the MLR model. Finally, the sensitivity analysis shows that the travel distance from source of pollution (L) and bulk density (ρ b) have, respectively, the most and the least effect on the soil dispersivity.

  相似文献   

11.
Lack of data often limits understanding and management of biodiversity in forested areas. Remote sensing imagery has considerable potential to aid in the monitoring and prediction of biodiversity across many spatial and temporal scales. In this paper, we explored the possibility of defining relationships between species diversity indices and Landsat ETM+ reflectance values for Hyrcanian forests in Golestan province of Iran. We used the COST model for atmospheric correction of the imagery. Linear regression models were implemented to predict measures of biodiversity (species richness and reciprocal of Simpson indices) using various combinations of Landsat spectral data. Species richness was modeled using the band set ETM5, ETM7, DVI, wetness and variances of ETM1, ETM2 and ETM5 (adjusted R2 = 0.59, RMSE = 1.51). Reciprocal of Simpson index was modeled using the band set NDVI, brightness, greenness, variances of ETM2, ETM5 and ETM7 (adjusted R2 = 0.459 RMSE = 1.15). The results demonstrated that spectral reflectance from Landsat can be used to effectively model tree species diversity. Predictive map derived from the presented methodology can help evaluate spatial aspects and monitor tree species diversity of the studied forest. The methodology also facilitates the evaluation of forest management and conservation strategies in northern Iran.  相似文献   

12.
Accurate, reliable, and up-to-date forest stand volume information is a prerequisite for a detailed evaluation of commercial forest resources and their sustainable management. Commercial forest responses to global climate change remain uncertain, and hence the mapping of stand volume as carbon sinks is fundamentally important in understanding the role of forests in stabilizing climate change effects. The aim of this study was to examine the utility of stochastic gradient boosting (SGB) and multi-source data to predict stand volume of a Eucalyptus plantation in South Africa. The SGB ensemble, random forest (RF), and stepwise multiple-linear regression (SMLR) were used to predict Eucalyptus stand volume and other related tree-structural attributes such as mean tree height and mean diameter at breast height (DBH). Multi-source data consisted of SPOT-5 raw spectral features (four bands), 14 spectral vegetation indices, rainfall data, and stand age. When all variables were used, the SGB algorithm showed that stand volume can be accurately estimated (R2 = 0.78 and RMSE = 33.16 m3 ha?1 (23.01% of the mean)). The competing RF ensemble produced an R2 value of 0.76 and a RMSE value of 37.28 m3 ha?1 (38.28% of the mean). SMLR on the other hand, produced an R2 value of 0.65 and an RMSE value of 42.50 m3 ha?1 (42.50% of the mean). Our study further showed that Eucalyptus mean tree height (R2 = 0.83 and RMSE = 1.63 m (9.08% of the mean)) and mean diameter at breast height (R2 = 0.74 and RMSE = 1.06 (7.89% of the mean)) can also be reasonably predicted using SGB and multi-source data. Furthermore, when the most important SGB model-selected variables were used for prediction, the predictive accuracies improved significantly for mean DBH (R2 = 0.81 and RMSE = 1.21 cm (6.12% of the mean)), mean tree height (R2 = 0.86 and RMSE = 1.39 m (7.02% of the mean)), and stand volume (R2 = 0.83 and RMSE = 29.58 m3 ha?1 (17.63% of the mean)). These results underscore the importance of integrating multi-source data with remotely sensed data for predicting Eucalyptus stand volume and related tree-structural attributes.  相似文献   

13.
The timing and quantity of fertilizer and herbicide applications in agricultural systems are critical where maximizing vigour and yield is the ultimate goal. While fertilizers are applied to the soil to promote plant growth, herbicides are commonly used to control weeds in order to reduce the weeds’ competition for nutrients. Satellite imagery is frequently used to monitor agricultural activities and vegetation indices (VIs) are widely applied in temporal analysis of crop status. This study considers monitoring Landsat VIs for the period between 5 June and 27 October 2014 in agricultural systems under four different management treatments at the Kellogg Biological Station (KBS), in Michigan, USA. The results show that (1) fine-tuning conventional treatments by intense early herbicide applications in combination with no-tilled soil results in significantly higher VIs during the early growth stage, a more rapid maturity rate, and the highest crop yield; (2) nitrogen uptake from nitrate-based rather than from ammonium-based fertilizers might be more beneficial in terms of crop vigour and yield return; (3) organic treatments, with organic corn and no agricultural chemicals, keep higher VIs longer in the season at the cost of lower yield; and (4) genetically modified (GM) breeds under conventional or reduced-chemical treatments have synchronized early senescence. A positive correlation between VIs during the early growth stage and yield is observed for conventional no-till treatment (coefficient of determination, R2 = 0.70). The correlation becomes gradually weaker with each month from late June to October (29 June: R2 = 0.70; 16 August: R2 = 0.61; 17 September: R2 = 0.44; 27 October: R2 = 0.01). The analysis of variance (ANOVA)–Tukey–Kramer approach suggests significant differences in VIs between organic and GM corn (treated conventionally or with reduced chemicals) for the preharvest season (27 October 2014). The leave-out-one cross-validation analysis confirms the predictive accuracy of the model (mean square error (MSE) = 0.0014). The rapid evolution of herbicide-resistant weeds requires constant refinement of chemical inputs to agricultural systems, thus making the monitoring of (Landsat) VIs important in the years to come.  相似文献   

14.
A number of methods to overcome the 2003 failure of the Landsat 7 Enhanced Thematic Mapper (ETM+) scan-line corrector (SLC) are compared in this article in a forest-monitoring application in the Yucatan Peninsula, Mexico. The objective of this comparison is to determine the best approach to accomplish SLC-off image gap-filling for the particular landscape in this region, and thereby provide continuity in the Landsat data sensor archive for forest-monitoring purposes. Four methods were tested: (1) local linear histogram matching (LLHM); (2) neighbourhood similar pixel interpolator (NSPI); (3) geostatistical neighbourhood similar pixel interpolator (GNSPI); and (4) weighted linear regression (WLR). All methods generated reasonable SLC-off gap-filling data that were visually consistent and could be employed in subsequent digital image analysis. Overall accuracy, kappa coefficients (κ), and quantity and allocation disagreement indices were used to evaluate unsupervised Iterative Self-Organizing Data Analysis (ISODATA) land-cover classification maps. In addition, Pearson correlation coefficients (r) and root mean squares of the error (RMSEs) were employed for estimates agreement with fractional land cover. The best results visually (overall accuracy > 85%, κ < 9%, quantity disagreement index < 5.5%, and allocation disagreement index < 12.5%) and statistically (r > 0.84 and RMSE < 7%) were obtained from the GNSPI method. These results suggest that the GNSPI method is suitable for routine use in reconstructing the imagery stack of Landsat ETM+ SLC-off gap-filled data for use in forest-monitoring applications in this type of heterogeneous landscape.  相似文献   

15.
Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.  相似文献   

16.
This study explored the feasibility of height distributional metrics and intensity values extracted from low-density airborne light detection and ranging (lidar) data to estimate plot volumes in dense Korean pine (Pinus koraiensis) plots. Multiple linear regression analyses were performed using lidar height and intensity distributional metrics. The candidate variables for predicting plot volume were evaluated using three data sets: total, canopy, and integrated lidar height and intensity metrics. All intensities of lidar returns used were corrected by the reference distance. Regression models were developed using each data set, and the first criterion used to select the best models was the corrected Akaike Information Criterion (AICc). The use of three data sets was statistically significant at R2 = 0.75 (RMSE = 52.17 m3 ha?1), R2 = 0.84 (RMSE = 45.24 m3 ha?1), and R2 = 0.91 (RMSE = 31.48 m3 ha?1) for total, canopy, and integrated lidar distributional metrics, respectively. Among the three data sets, the integrated lidar metrics-derived model showed the best performance for estimating plot volumes, improving errors up to 42% when compared to the other two data sets. This is attributed to supplementing variables weighted and biased to upper limits in dense plots with more statistical variables that explain the lower limits. In all data sets, intensity metrics such as skewness, kurtosis, standard deviation, minimum, and standard error were employed as explanatory variables. The use of intensity variables improved the accuracy of volume estimation in dense forests compared to prior research. Correction of the intensity values contributed up to a maximum of 58% improvement in volume estimation when compared to the use of uncorrected intensity values (R2 = 0.78, R2 = 0.53, and R2 = 0.63 for total, canopy, and integrated lidar distributional metrics, respectively). It is clear that the correction of intensity values is an essential step for the estimation of forest volume.  相似文献   

17.
Leaf area index (LAI) is an important structural vegetation parameter that is commonly derived from remotely sensed data. It has been used as a reliable indicator for vegetation's cover, status, health and productivity. In the past two decades, various Canada-wide LAI maps have been generated by the Canada Centre for Remote Sensing (CCRS). These products have been produced using a variety of very coarse satellite data such as those from SPOT VGT and NOAA AVHRR satellite data. However, in these LAI products, the mapping of the Canadian northern vegetation has not been performed with field LAI measurements due in large part to scarce in situ measurements over northern biomes. The coarse resolution maps have been extensively used in Canada, but finer resolution LAI maps are needed over the northern Canadian ecozones, in particular for studying caribou habitats and feeding grounds.

In this study, a new LAI algorithm was developed with particular emphasis over northern Canada using a much finer resolution of remotely sensed data and in situ measurements collected over a wide range of northern arctic vegetation. A statistical relationship was developed between the in situ LAI measurements collected over vegetation plots in northern Canada and their corresponding pixel spectral information from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. Furthermore, all Landsat TM and ETM+ data have been pre-normalized to NOAA AVHRR and SPOT VGT data from the growing season of 2005 to reduce any seasonal or temporal variations. Various spectral vegetation indices developed from the Landsat TM and ETM?+?data were analysed in this study. The reduced simple ratio index (RSR) was found to be the most robust and an accurate estimator of LAI for northern arctic vegetation. An exponential relationship developed using the Theil–Sen regression technique showed an R 2 of 0.51 between field LAI measurement and the RSR. The developed statistical relationship was applied to a pre-existing Landsat TM 250 m resolution mosaic for northern Canada to produce the final LAI map for northern Canada ecological zones. Furthermore, the 250 m resolution LAI estimates, per ecological zone, were almost generally lower than those of the CCRS Canada-wide VGT LAI maps for the same ecozones. Validation of the map with LAI field data from the 2008 season, not used in the derivation of the algorithm, shows strong agreement between the in situ LAI measurement values and the map-estimated LAI values.  相似文献   

18.
This study presents the first comparison of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI) in identifying soil salinity using soil physiochemical, spectral, statistical, and image analysis techniques. By the end of the century, intermediate sea level rise scenarios project approximately 1.3 meters of sea level rise along the coast of the southeastern United States. One of the most vulnerable areas is Hyde County, North Carolina, where 1140 km2 of agricultural lands are being salinized, endangering 4,200 people and $40 million USD of property. To determine the best multispectral sensor to map the extent of salinization, this study compared the feasibility of OLI and MSI to estimate electrical conductivity (EC). The EC of field samples were correlated with handheld spectrometer spectra resampled into multispectral sensor bands. Using an iterative ordinary least squares regression, it was found that EC was sensitive to OLI bands 2 (452 nm – 512 nm) and 4 (636 nm – 673 nm) and MSI bands 2 (457.5 nm – 522.5 nm) and 4 (650 nm – 680 nm). Respectively, the R2Adj and Root Mean Square Error (RMSE) of 0.04–0.54 and 1.15 for OLI, and 0.05–0.67 and 1.17 for MSI, suggests that the two sensors have similar salinity modelling skill. The extracted saline soils make up approximately 1,703 hectares for OLI and 118 hectares for MSI, indicating overestimation from the OLI image due to its coarser spatial resolution. Additionally, field samples indicate that nearby vegetated land is saline, indicating an underestimation of total impacted land. As sea levels rise, accurately monitoring soil salinization will be critical to protecting coastal agricultural lands. MSI’s spatial and temporal resolution makes it superior to OLI for salinity tracking though they have roughly equivalent spectral resolutions. This study demonstrates that visible spectral bands are sensitive to soil salinity with the Blue and Red spectral ranges producing the highest model accuracy; however, the low accuracies for both sensors indicate the need of narrowband sensors. The HyspIRI to be launched in the early 2020s by NASA may provide ideal data source in soil salinity studies.  相似文献   

19.
The conservation of Jordan's Mediterranean forest requires the use of remote sensing. Among the most important parameters needed are the crown-cover percentage (C) and above-ground biomass (A). This study aims to: (1) identify the best predictor(s) of C using Landsat Enhanced Thematic Mapper (ETM) bands and the derived transformed normalized difference vegetation index (TNDVI); (2) determine if C is a good predictor of A, volume (V), Shannon diversity index (S) and basal area (B); and (3) generate maps of all these parameters. A Landsat ETM image, aerial photographs and ground surveys are used to model C using multiple regression. C is then modelled to A, V, S and B using linear regression. The relationship between C and Landsat ETM bands (1 and 7) plus the TNDVI is significantly high (coefficient of determination R 2 = 0.8) and is used to produce the C map. The generated C map is used to predict A (R 2 = 0.56), V (R 2 = 0.58), S (R 2 = 0.50) and B (R 2 = 0.43). Cross validation for the predicted C map (cross-validation error = 5.3%) and for the predicted forest-parameter maps (cross-validation error = 13.7%–19.9%) shows acceptable error levels. Results indicate that Jordan's east Mediterranean forest parameters can be mapped and monitored for biomass accumulation and carbon dioxide (CO2) flux using Landsat ETM images.  相似文献   

20.
Leaf area index (LAI) is one of the most important plant parameters when observing agricultural crops and a decisive factor for yield estimates. Remote-sensing data provide spectral information on large areas and allow for a detailed quantitative assessment of LAI and other plant parameters. The present study compared support vector regression (SVR), random forest regression (RFR), and partial least-squares regression (PLSR) and their achieved model qualities for the assessment of LAI from wheat reflectance spectra. In this context, the validation technique used for verifying the accuracy of an empirical–statistical regression model was very important in order to allow the spatial transferability of models to unknown data. Thus, two different validation methods, leave-one-out cross-validation (cv) and independent validation (iv), were performed to determine model accuracy. The LAI and field reflectance spectra of 124 plots were collected from four fields during two stages of plant development in 2011 and 2012. In the case of cross-validation for the separate years, as well as the entire data set, SVR provided the best results (2011: R2cv = 0.739, 2012: R2cv = 0.85, 2011 and 2012: R2cv = 0.944). Independent validation of the data set from both years led to completely different results. The accuracy of PLSR (R2iv = 0.912) and RFR (R2iv = 0.770) remained almost at the same level as that of cross-validation, while SVR showed a clear decline in model performance (R2iv = 0.769). The results indicate that regression model robustness largely depends on the applied validation approach and the data range of the LAI used for model building.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号