首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
For many years, water and ethylene glycol were used as conventional coolants in automotive car radiators, but these coolants offer lower thermal conductivity than is required. This study is focused on the application of water‐based Al2O3 nanofluid at lower concentrations in a car radiator. The Al2O3 nanoparticles with an average diameter of 50 nm are dispersed in demineralized water at four different volume concentrations (0.1 vol. % to 0.4 vol. %) without any dispersant or stabilizer. Flow rate is varied in the range of 2 l/min to 5 l/min and inlet coolant temperature to the radiator is set to 50 °C, 60 °C, and 70 °C. The results show that the heat transfer coefficient increases with an increase in particle concentration, flow rate, and inlet temperature of coolant and the maximum increase in heat transfer coefficient is 45.87 % compared to pure water. However, the Nusselt number increases with the increase in particle concentration, Reynolds number, and inlet temperature of the coolant. In addition with the experimental study, a regression analysis is performed by using the ANOVA method and generates a correlation for the convective heat transfer coefficient.  相似文献   

2.
对旋进射流冲击平板时的传热进行了实验研究。通过在圆筒套管内设置一块孔板构成旋进射流喷嘴,得到了持续稳定的旋进射流。对旋进射流的流动特性作了研究,给出了旋进射流的频率与尺寸、Re的关系。用两种不同孔径的旋进射流冲击一块加热平板,并与普通的射流冲击传热作对比。结果表明,由于旋进射流与流体混合作用加剧而大大地降低了流速,使得强化传热的效果减弱,这种趋势在驻点附近尤为明显。  相似文献   

3.
    
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   

4.
圆形冲击射流传热性能的实验研究   总被引:5,自引:1,他引:5  
应用萘升华传质/传热比拟技术,对单个圆形射流在不同喷嘴到被冲击表面距离(1≤H/D≤12),在7×103≤R e≤1.9×104时,进行了局部传质/传热实验;研究了不同喷嘴到被冲击表面距离和不同R e对单个圆形射流局部换热特性的影响。单个圆形射流局部传热系数随着R e的增加而大幅度增加,R e是影响局部换热系数的主要因素。在同一R e下局部换热系数沿轴向非单调变化,在驻点处当H/D≌6时换热系数达到峰值;H/D<6时,局部换热系数沿径向有两个峰值;随H/D的增加,中心区局部N u减小,但影响范围变大。  相似文献   

5.
This research work discusses the heat transfer improvement in a tractor radiator with nanosized particles of CuO with water as base fluid. The nano materials and its suspension in fluids as particles have been the subject of intensive study worldwide recently since pioneering researchers recently discovered the anomalous thermal behavior of these fluids. The engine cooling in heavy vehicles is an important factor for their performance in the intended application. Here, the tractor engine radiator cooling is enhanced by the nanofluid mechanism of heat transfer for its improved performance in agricultural work. Through the improvement of tractor engine cooling through the radiator a greater area can be ploughed and cultivated within a short time span. Heat transfer in automobiles is achieved through radiators. In this research work an experimental and numerical investigation for the improved heat transfer characteristics of a radiator using CuO/water nanofluid for 0.025 and 0.05% volume fraction is done with an inlet temp of 50 °C to 60 °C under the turbulent flow regime (8000 ≤ Re ≤ 25000). The overall heat transfer coefficient decreases with an increase in nanofluid inlet temperature of 50 °C to 60°C. The experimental results of the heat transfer using the CuO nanofluid is compared with the numerical values. The results in this work suggest that the best heat transfer enhancement can be obtained compared with the base fluid by using a system with CuO/ water nanofluid‐cooled radiators.  相似文献   

6.
    
The flow field in a fuel cell is expected to distribute the reactants as uniformly as possible over the active plate, support the reasonable pressure drop across the channel and maximize the mass transfer through the catalyst layers. To simultaneously accomplish these requirements, an innovative multiple impingement jet flow field (MIJFF) is proposed in this study. A three-dimensional thermo-fluid simulation is used to evaluate the proposed idea and compare its performance against the commonly used parallel field flow (PFF). The domain of calculations includes a channel with multiple impingement jets linked to a porous gas diffusion layer under low Reynolds flow conditions. The results reveal that the suggested MIJFF design significantly increases the transport of the reactant gases through the catalyst layer. The penetration depth into the catalyst layer in the MIJFF arrangement is higher than that of the PFF setup and the use of the catalyst layer is optimized, which in turn can lead to a reduction of the activation drop. Compared to a PFF design under similar operating conditions, the mean Nusselt number is shown to increase by a factor of about 3.5 in the MIJFF setup. Furthermore, the temperature is more uniformly distributed in the MIJFF pattern which results in more effective distribution of the reactant gases over the active surface. The current study shows that under equal pressure drop conditions, the MIJFF exhibits a much higher performance than a PFF channel design. That is while the corresponding flow rate for the MIJFF is much lower than that of PFF.  相似文献   

7.
High-performance compact heat sinks have been developed for the effective cooling of high-density LSI packaging. Heat transfer and pressure loss characteristics of the heat sinks in both air-cross-flow and air-jet cooling have been experimentally studied. The present heat sinks were of plate-fin and pin-fin arrays with a fin pitch of 0.7 mm. The plate-fin heat sinks had higher cooling performance than the pin-fin heat sinks in the range of large airflow rates both in air-cross-flow and air-jet cooling. The thermal conductance in cross-flow cooling was 20 or 40% larger than that in jet cooling. The correlation of Colburn j-factor/Fanning friction factor versus the Reynolds number for the present heat sinks was found to be very close to that of a conventional large-size heat exchanger. © Scripta Technica, Heat Trans Asian Res, 28(8): 687-705, 1999  相似文献   

8.
    
An attempt is made to investigate the steady magnetohydrodynamic convective flow of the viscous nanofluid due to a permeable exponentially stretching porous surface. Water is used as a traditional fluid while nanoparticles include copper and alumina. The fluid is electrically conducting, subject to an applied magnetic field with a constant strength. Convective type boundary conditions are employed in modeling the heat transfer process. The nonlinear partial differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations and then solved using the Runge‐Kutta fourth‐order method. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity and temperature, as well as local shear stress and local Nusselt number, is presented graphically. Hartman number increase diminishes the velocity and has the contrary result in the subjective sense for the mass transfer parameter. An increase in the Prandtl number Pr lessens the temperature and thickness of the thermal boundary layer. The main conclusions have been indicated.  相似文献   

9.
Solar energy is one of the best sources of renewable energy with minimal environmental impact. A numerical study has been conducted to investigate the natural convection inside a solar collector having a flat‐plate cover and a sine‐wave absorber. The water‐alumina nanofluid is used as the working fluid inside the solar collector. The governing differential equations with boundary conditions are solved by the penalty finite element method using Galerkin's weighted residual scheme. The effects of physical parameters on the natural convection heat transfer are simulated. These parameters include the number of wave λ and non‐dimensional amplitude A of the sinusoidal corrugated absorber. Comprehensive average Nusselt number, average temperature, and mean velocity field for both nanofluid and base fluid within the collector are presented as functions of the parameters mentioned above. Comparison with previously published work is made and found to be in excellent agreement. The numerical results show that the highest heat transfer rate is observed for both the largest λ and A. In addition, the design for enhancing the performance of the collector is determined by examining the above‐mentioned results. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21026  相似文献   

10.
This work is devoted to the numerical study of the interaction of an inclined plane turbulent jet with a moving horizontal isothermal hot wall. The inclination of the jet allows the control of the stagnation point location. The numerical predictions based on statistical modeling are achieved using second order Reynolds stress turbulence model coupled to the enhanced wall treatment. The jet Reynolds number (Re), surface‐to‐jet velocity ratio (Rsj); and optimal inclination angle of the jet (α) are varied. The calculations are in good agreement with the available data. The numerical results show that the heat transfer is greatly influenced by the jet Re and the velocity of the moving wall. The local Nusselt number (Nu) decreases with increasing Rsj (until Rsj = 1). However, the optimal inclination of the jet enhances heat transfer and modifies significantly the stagnation point location. Average Nu is correlated according with the problem parameters as .  相似文献   

11.
运用计算流体力学方法,采用SSG雷诺应力模型对高温条件下垂直内螺纹管中超临界水的二次流特性进行了研究。研究发现:内螺纹的导流作用在垂直于主流的方向产生了很强的二次流场,主流焓的变化对二次流场的基本结构影响很小。内螺纹管周向和径向上的传热系数分布不均,超临界水在螺纹顶部区域的传热效果远好于螺纹底部。在螺纹顶部表面形成的单个旋涡产生一个压力相对较低的区域,传热增强。在大比热区,由于流体热物性急剧变化,传热的不均性更加显著。螺纹底部壁面是内螺纹管周向传热的薄弱位置,其内部结构的优化应重点集中在该区域。  相似文献   

12.
13.
The flow field around a circular cylinder elastically suspended with a cantilever‐type plate spring in the jet impingement region was visualized to investigate the mechanism of the impingement heat transfer. The impingement distance H was kept constant at 3 or 5 times as large as the jet slot width, h = 15 mm.The Reynolds number was fixed at 10,000, or 5000 in the case of flow visualization. The self‐induced periodic swing motion of the cylinder across the jet axis was caused by the interaction between the jet and the elastically suspended cylinder. It was found that this swing motion has direct effects on the flow and heat transfer characteristics of the stagnation region. The ensemble‐averaged values of the flow velocity and its fluctuations depended on the cylinder diameter and the impingement distance. The local Nusselt number in the case of H/h = 3 with the oscillating cylinder of the smallest diameter D = 4 mm was increased to 1.15 times as large as that without the cylinder. The interesting patterns of the intermittency function defined with a certain threshold level of turbulence intensity were obtained under the above experimental conditions. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 313–330, 2001  相似文献   

14.
IntrotctiouAImular chrDmatography Provides the POssibility ofseparating multicomponent fixtures continuously inone single unit. The rotating annulus of thechromatotw can be filled with arbitw stationalsPhases depending on the existing separation Problem.The feed is introduced at a fixed and stationary sechonat the top of the unit, while the eluent is distributedeverywhere else around the upper circumference. At thebottom the separated Products can be collected atcendn stationals exit angle…  相似文献   

15.
Previous studies on boiling heat transfer by impinging jets were mainly concerned with the impinging point by using small heat transfer surfaces of about 20 mm. An experimental study was made of the boiling heat transfer to an impinging water jet on a massive hot block. The upward heating surface was made of copper, its diameter and the nozzle diameter being 80 and 2.2 mm, respectively. The velocity of the impinging jet was varied between 0.6 and 2.1 m/s. Saturated water impinged normally on the heating surface, flowed radially, and subsequently dispersed into the atmosphere. It is clarified in the present study that heat transfer characteristics vary with the temperature of the heat transfer surface, and also with the distance from the impinging point. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 418–427, 1999  相似文献   

16.
    
An experimental and numerical study on convection heat transfer of water flowing through an alternating cross‐section flattened (ACF) tube are investigated in this paper. The thermal‐fluid characteristics were evaluated by numerical simulation. The test run conditions covered a mass flux of 200 to 800 kg m?2 s?1, a heat flux of 10 kW/m2, and an inlet temperature of 40°C. The results showed that the Nusselt number increased with the increase in mass flux. Moreover, the heat transfer was also affected by the flow characteristics. Vortices were formed at the curved wall, and their intensities were increased along the flow direction. It was also found that the heat transfer and pressure drop were larger than that of the circular tube. However, the thermal performance was greater than the pressure loss penalty. The comparison results showed that the ACF tube had better performance than the circular tube. Further, the details of heat transfer, flow resistance, and fluid behavior were investigated and discussed in this study.  相似文献   

17.
提出了一种用于超临界液化天然气换热的微小通道换热器整体性能提高的被动式强化技术并进行了数值模拟验证和设计优化。在普通的矩形微小通道内利用3D激光打印技术在壁面加工横向圆弧形微沟槽以强化换热能力。首先对圆弧形微沟槽的槽深、槽宽和相邻两槽道中心距等几何尺寸进行了优化计算,然后讨论了在使用强化技术后工质温度在跨越临界温度的120.000~250.000 K的换热强化和流动特性,进一步考察了工质温度、质量流量(雷诺数)和进口压力对传热系数(努塞尔数)、摩擦因子和综合效益系数的影响。此外,通过微沟槽附近的局部流动特性分析强化换热机理,数值模拟结果表明带有横向微沟槽的紧凑式换热器的综合换热效益得到30%左右增加,显示了优异的换热强化综合效果。  相似文献   

18.
The flow of a high‐speed unsteady jet is analyzed using computational fluid dynamics for an incompressible flow with the k–ε turbulence model. The pseudo‐nozzle concept is applied to the inlet condition with a large pressure gradient. The results show that the time history of the jet development agrees with the experimental data for methane and hydrogen fuels. In addition, the effect of the injection condition on the development of the jet tip is well described with this model. Furthermore, the effects of inlet conditions of the turbulence intensity and scale on the flow are investigated. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1): 1– 12, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20141  相似文献   

19.
    
The aim of this study is to examine the impact of motile gyrotactic microorganisms on three-dimensional (3D) cylindrical geometry attached to a Cross-fluid flow mathematical model. The motion of the microorganisms is assumed to be governed by gyrotaxis, which is the tendency of the organisms to orient and swim perpendicular to fluid flow gradients. The study will incorporate the effects of the Cross fluid flow model with infinite shear rate viscosity, 3D cylinder geometry, and microorganism behavior on the resulting distribution and concentration of the organisms. For the inspection of the velocity profile of the Cross nanofluid, the inclined magnetic field is scrutinized. The temperature of Cross nanofluid and its concentration is also studied with several facts. Mass flux and heat flux values for motile microorganisms and nanoparticles are calculated through statistical graphs. Brownian motion parameter gives a lower concentration of nanoparticles, about 81.19% and 77.53% reduction is found in the concentration of motile microorganisms. These results will provide insights into the behavior of these microorganisms in natural and engineered environments, as well as their potential applications in fields such as biotechnology, environmental science, and medicine.  相似文献   

20.
全玻璃真空管太阳能热水器影响因素的数值模拟研究   总被引:1,自引:0,他引:1  
利用热能工程专业基础知识和场协同原理,结合计算流体力学配套商业软件,对反光板、倾斜角度、辐照强度、集热管尺寸和水箱大小等因素,影响全玻璃真空管太阳能热水器的传热传质特性进行了数值模拟研究和可视化分析,通过数值模拟研究给出了全玻璃真空管太阳能热水器的的最佳条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号