首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-velocity oxyfuel thermal spray coatings for biomedical applications   总被引:1,自引:1,他引:1  
Plasma spraying is used to produce most commercially available bioceramic coatings for dental implants; however, these coatings still contain some inadequacies. Two types of coatings produced by the high- velocity oxyfuel (HVOF) combustion spray process using commercially available hydroxyapatite (HA) and fluorapatite (FA) powders sprayed onto titanium were characterized to determine whether this relatively new coating process can be applied to bioceramic coatings. Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy, x- ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the composition, microstructure, and morphology of the coatings. The XRD and FTIR techniques revealed an apatitic structure for both HA and FA coatings. However, XRD patterns indicated some loss in crystallinity of the coatings due to the spraying process. Results from FTIR showed a loss in the intensity of the OH and F groups due to HVOF spraying; the phosphate groups, however, were still present. Analysis by SEM showed a coating morphology similar to that obtained with plasma spraying, with complete coverage of the titanium substrate. Interfacial SEM studies revealed an excellent coating-to-substrate apposition. These results indicate that with further optimization the HVOF thermal spray process may offer another method for producing bioceramic coatings.  相似文献   

2.
Phase transformations, particle breakdown, and partial decomposition occur in hydroxyapatite (HA) powder feedstock during plasma spraying. The biological responses of the coatings consequently change from the bioactive nature of the starting material to a less biocompatible one. This paper investigates the influence of powder characteristics on the phase composition and microstructure of plasma sprayed HA coatings. The raw HA was prepared by chemically reacting calcium hydroxide with orthophosphoric acid. Subsequently, HA was either calcined and crushed, flame spheroidized, or spray dried. These three types of HA powders were plasma sprayed on steel substrates to form coatings. A previous study showed that the calcined HA powder suffered from particle breakdown in the plasma. The plasma sprayed HA powders contained other calcium phosphate phases (amorphous and crystalline) apart from hydroxyapatite. The flow properties and stability of spheroidized HA were better than calcined HA and spraydried HA. Standard metallographic preparation of the cross sections of the coatings revealed different microstructural features among the coatings. The HA coatings prepared from calcined HA were highly porous and lacking in intimate lamellar contact. The spheroidized HA powders produced the coating with the lowest porosity. Characterization of the powders and coatings was carried out using x-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy.  相似文献   

3.
Titanium (Ti) and its alloys are widely used as candidate materials for biomedical implants. Despite their good biocompatibility and corrosion resistance, these materials suffer from corrosion after implantation in biological environments. The aim of this research work is to study the effect of two coatings on biocompatibility and corrosion behavior of Ti-6Al-4V biomedical implant material. Hydroxyapatite (HA) and hydroxyapatite/titanium dioxide (HA/TiO2) coatings were thermal-sprayed on Ti-6Al-4V substrates. In the latter case, TiO2 was used as a bond coat between the substrate and HA top coat. The corrosion behavior of coated and un-coated samples in Ringer’s solution was studied by potentiodynamic and linear polarization techniques. Before and after corrosion testing, XRD and SEM/EDS techniques were used for the analysis of phases formed and to investigate microstructure/compositional changes in the coated specimens. The cellular response was analyzed by the MTT (microculture tetrazolium) assay. The results showed that both the HA, as well as, the HA/TiO2 coatings significantly increased the corrosion resistance of the substrate material. The HA coating was found to be more biocompatible as compared to the un-coated and HA/TiO2-coated Ti-6Al-4V alloy.  相似文献   

4.
Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.  相似文献   

5.
Calcium phosphate materials such as hydroxyapatite (HA) have biocompatible properties that can promote osteogenesis or new bone formation. Thermal spraying is an economical and effective process for coating the hydroxyapatite onto metal. It has been reported that plasma spraying changes the degree of crystallinity as well as the phase composition of the HA. This article reports the preparation and characterization of HA powders and coatings by two thermal spray processes (plasma and combustion flame) and suggests that the state of the starting powder adversely affects the coating characteristics. The raw HA powders are synthesized through a chemical reaction involving calcium hydroxide and orthophosphoric acid. Phase analysis using an X- ray diffractometer revealed that the synthesized powder consists of predominantly the HA phase. Calcined and crushed HA powders of various size ranges were fed into the plasma jet to produce HA coatings on metallic substrates. In addition, some HA powders were sprayed into distilled water by plasma spraying and combustion flame spraying to study powder melting characteristics. Other samples were plasma sprayed onto a solid rotating target to study atomization and impact behavior. The morphology of the rapidly solidified powders and thermal sprayed coatings were examined by scanning electron microscopy (SEM). An X- ray sedimentation particle size analyzer, laser diffraction particle size analyzer, and image analyzer performed the particle size analysis. Preliminary results indicate that particle cohesion, size range, and thermal treatment in the plasma affect the phase and structure of the as- sprayed coating, and some post- spray treatment may be necessary to produce a dense and adherent coating with the desired biocompatible properties.  相似文献   

6.
冷喷涂技术(cold spray technology)是一类赋予材料表面特殊性能的重要手段。概述了冷喷涂技术在制备温度敏感生物材料加工领域的优势,并重点综述了利用冷喷涂技术制备的典型生物材料。目前,冷喷涂沉积永久性植入金属材料,如Ti合金、Fe基合金、Co-Cr合金和可降解金属材料Mg合金等技术相对成熟。近年来随着冷喷涂技术的发展,有效解决和拓展了用于医疗器械表面改性的涂层材料体系,如冷喷涂制备高分子材料超高分子量聚乙烯(UHMWPE)涂层,以及高密度聚乙烯(HDPE)和聚醚醚酮(PEEK)表面冷喷涂制备生物涂层。最值得关注的冷喷涂或真空冷喷涂技术制备陶瓷涂层,如羟基磷灰石(HA)、羟基磷灰石-石墨烯(HA-graphene)以及二氧化钛(Ti O2),在生物医学领域应用具有突破性进展。同时归纳了冷喷涂技术在生物医学领域的研究现状和问题,虽然在针对冷喷涂生物涂层的微观结构、力学行为、腐蚀抗力等方面取得了一定成果,在组织工程、抗菌材料等领域也取得了尝试性突破,但尚缺乏系统的冷喷涂涂层生物学性能表征,涂层与细胞/组织相互作用机理还不明确,相关的临床研究欠缺。最后,在此基础上,展望了未来生物材料朝功能化和个性化医疗方向的发展方向。冷喷涂技术在功能化载药涂层的低温制备和个性化医疗器械增材制造等领域将有更大的应用空间,并给新型生物材料的表面改性带来更多机遇和可能。  相似文献   

7.
Titanium alloy implants are widely employed in biomedical devices and components, especially as hard tissue replacements as well as orthopaedic applications, owing to their favourable properties such as high-strength to weight ratio, low density, low Young’s modulus and biocompatibility. However, metallic implants cannot meet all of the clinical requirements. Therefore, in order to increase their clinical success and long term stability in the physiological environment, surface modification is often performed. This review focuses on the latest achievements in the field of surface modification techniques including sol-gel, thermal spray, magnetron sputtering, electrophoretic deposition and micro-arc oxidation of biocompatible calcium phosphates (CaP) based ceramics coatings for metallic implants with emphasis on the structure, morphological characterization, phase transformation and coating composition. A reflection on the results shows that CaP coatings can be grown with the each type of techniques and a stronger fixation can be enhanced with CaP fabrication on metallic implants. Advantages and limitations of the aforementioned techniques of CaP-based coatings from the point of view of the process simplicity as well as the most important challenges of each coating techniques are highlighted. Further, the most promising method for CaP deposition was identified and a specific area for improvement was discussed.  相似文献   

8.
羟基磷灰石由于其良好的生物活性,被广泛的用作医用植入体的表面涂层材料.采用微束等离子喷涂(Microplasma Spraying,MPS)I艺在Ti-6Al-4V基体上制备羟基磷灰石涂层,通过扫描电镜(SEM)、X射线衍射(XRD)和傅里叶红外光谱(FTIR)分析了热处理对涂层相组成和表面形貌的影响规律.研究表明:微束等离子喷涂制备的羟基磷灰石涂层在经过热处理后结晶度提高,并且非晶相和杂质相转化成为HA结晶相.同时,羟基和磷酸根的完整性得到了恢复.过高的热处理温度易引起涂层裂纹等缺陷的增加,也容易造成羟基脱离造成HA分解.合理的热处理温度范围为600~700℃,保温时间为3 h.  相似文献   

9.
Hydroxylapatite (HA) coatings on metal substrates have been investigated for many years. These coatings have proved to be compatible with bone. The degree of crystallinity of HA changed, and sometimes dissociation was observed with respect to the plasma spray process. However, the plasma spray process hardly altered the crystallographic structure, with only line broadening visible. Thein vitro solubility is dependent on the degree of crystallinity of the coating. Tensile strength measurements on the strength of the coating-substrate interface using various adhesives revealed a significant difference between epoxy resin and methacrylate. The failure mode of this tensile test was dependent on the coating thickness and surface texture (polished versus nonpolished). In animal studies, the fixation of hydroxylapatite plasma- spray coated cylinders as well as noncoated Ti- 6A1- 4V cylinders (Ti) in cortical bone was evaluated using pushout tests. It appeared that HA- coated implants showed higher push- out strengths in the first months than the titanium implants, because of the earlier bone formation against the HA coating.  相似文献   

10.
Development of novel biocompatible nanomaterials has provided insights into their potential biomedical applications. Bulk fabrication of the nanomaterials in the form of coatings remains challenging. Here, we report hydroxyapatite (HA)/graphene-nanosheet (GN) composite coatings deposited by vacuum cold spray (VCS). Significant shape changes of HA nanograins during the coating deposition were revealed. The nanostructural features of HA together with curvature alternation of GN gave rise to dense structures. Based on the microstructural characterization, a structure model was proposed to elucidate the nanostructural characteristics of the HA-GN nanocomposites. Results also showed that addition of GN significantly enhanced fracture toughness and elastic modulus of the HA-based coatings, which is presumably accounted for by crack bridging offered by GN in the composites. The VCS HA-GN coatings show potential for biomedical applications for the repair or replacement of hard tissues.  相似文献   

11.
Hydroxyapatite (HA) coatings are being widely used in biomedical applications owing to their excellent biocompatibility and osteoconductivity. Recent studies have demonstrated that the crystallographic texture plays an important role in improving the chemical stability and mechanical properties of HA coatings. In this study, optimized APS parameter was selected to deposit HA coatings with strong (002) crystallographic texture, high phase purity and enhanced melting state. Cross-sectional SEM images show uniformly distributed columnar grains perpendicular to the coating surface. To study the formation conditions of columnar grains, coatings with distinct microstructure were deposited with different spray parameters. Moreover, HA coatings were deposited on substrates with varying temperatures such as 25, 300 and 600 °C at a long stand-off distance to evaluate the role of the substrate temperature in the formation of columnar grains. The results indicate that completely molten in-flight particles and slow cooling rate are necessary conditions to form a strong crystallographic texture. The present study suggests that the crystalline structure of HA coatings deposited and formed by APS could be well controlled by modifying spray parameters and substrate temperature.  相似文献   

12.
Hydroxyapatite (HA)–titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA–TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH? and CO3 2? was observed, which was favorable for the biomedical applications.  相似文献   

13.
In clinical applications, the mechanical failure of HA-coated titanium alloy implants suffered at the interface of the HA coating and titanium alloy substrate will be a potential weakness in prosthesis. Yttria stabilized zirconia (YSZ) reinforced HA coatings have been proven to enhance the mechanical properties of the HA coating significantly and reduce the formation of calcium oxide (CaO). In this paper, HA/YSZ (30 wt.% YSZ) composite coatings were sprayed by the plasma technique. The effects of the powder processing–mechanical ball milling method and spheroidization method on the microstructure and mechanical properties of the HA/YSZ composite coatings were evaluated. The experimental results showed that the spheroidized powders melted better than the ball milled powders during plasma spraying and formed higher mechanical property coatings (1.6326±0.08 MPa m−0.5 of fracture toughness, 58.59±2.91 GPa of elastic modulus and 43.42±2.53 MPa of tensile bond strength). HA/YSZ solid solution formed during deposition on the substrate, which played a very important role in the mechanical properties of the HA/YSZ composite coatings. Tensile bond strength tests showed that the fracture mode was cohesive and that failure occurred at the interface of HA and unmelted YSZ particles. The molten state of YSZ had a great influence on the properties of the HA/YSZ composite coatings.  相似文献   

14.
Thermal spray coatings produced from nanostructured ceramic agglomerated powders were tailored for different applications, some of which required almost completely opposite performance characteristics (e.g., anti-wear and abradable coatings). The influence of nanostructured materials on important areas, such as, thermal barrier coatings (TBCs) and biomedical coatings was also investigated. It was determined that by controlling the distribution and character of the semi-molten nanostructured agglomerated particles (i.e., nanozones) embedded in the coating microstructure, it was possible to engineer coatings that exhibited high toughness for anti-wear applications or highly friable for use as abradables, exhibiting abradability levels equivalent to those of metallic-based abradables. It is shown that nanozones, in addition to being very important for the mechanical behavior, may also play a key role in enhancing and controlling the bioactivity levels of biomedical coatings via biomimetism. This research demonstrates that these nanostructured coatings can be engineered to exhibit different properties and microstructures by spraying nanostructured ceramic agglomerated powders via air plasma spray (APS) or high velocity oxy-fuel (HVOF). Finally, in order to present readers with a broader view of the current achievements and future prospects in this area of research, a general overview is presented based on the main papers published on this subject in the scientific literature.  相似文献   

15.
Tailoring powder characteristics to suit the plasma spray process can alleviate difficulties associated with the preparation of hydroxyapatite (HA) coatings. Commercial HA feedstock normally exhibit an angular morphology and a wide particle size range that present difficulties in powder transport from the powder hopper to the plasma spray gun and in nonuniform melting of the powders in the plasma flame. Hence, combustion flame spheroidized hydroxyapatite (SHA) was used as the feedstock for plasma spraying. Spherical particles within a narrow particle size range are found to be more effective for the plasma spray processes. Results show coatings generated from spheroidized HA powders have unique surface and microstructure characteristics. Scanning electron microscope (SEM) observation of the coating surface revealed well-formed splats that spread and flatten into disc configurations with no disintegration, reflecting adequate melting of the HA in the plasma and subsequent deposition consistency. The surface topography is generally flat with good overlapping of subsequent spreading droplets. Porosity in the form of macropores is substantially reduced. The cross-section microstructure reveals a dense coating comprised of randomly stacked lamellae. The tensile bond strengths of the SHA coatings, phase composition, and characteristics of the coatings generated with different particle sizes (125 to 75 μm, 45 to 75 μm, 20 to 45 μm, and 5 to 20 μm) showed that a high bond strength of ∼16 MPa can be obtained with SHA in the size range from 20 to 45 μm. This can be improved further by a postspray treatment by hot isostatic pressing (HIP). However, larger particle size ranges exhibited higher degrees of crystallinity and relatively higher HA content among the various calcium phosphate phases found in the coatings.  相似文献   

16.
Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review   总被引:1,自引:0,他引:1  
Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.  相似文献   

17.
Nanostructured materials are of widespread interest because of the unique properties they offer. Well-proven techniques, such as ball milling, exist for preparing powders with nanocrystalline microstructures. Nevertheless, consolidation of nanocrystalline powders is challenging and presents an obstacle to the use of nanocrystalline metals. This work demonstrates that nanocrystalline aluminum powders can be consolidated using the cold spray process. Furthermore, transmission electron microscopy (TEM) analysis of the nanocrystalline cold spray coatings reveals that the cold spray process can cause significant grain refinement. Inert gas atomized 6061 and 5083 aluminum powders were ball milled in liquid nitrogen resulting in micron-sized powder containing 250-400 nm grains. Cold spray coatings prepared using these feed stock materials exhibited homogenous microstructures with grain sizes of 30-50 nm. TEM images of the as-received powders, ball-milled powders, and cold spray coatings are shown.  相似文献   

18.
Electrophoretic deposition method has been developed for the fabrication of organic–inorganic composite coatings for biomedical applications. The coatings were obtained as multilayer and functionally graded materials (FGM). Needle-shaped hydroxyapatite (HA) particles were prepared by a wet chemical method and used for the fabrication of chitosan–HA layers. The HA particles in the chitosan matrix showed preferred orientation of c-axis parallel to the substrate surface. Multilayer coatings were obtained, which contained pure chitosan layers and composite HA–chitosan layers. The thickness of the multilayer coatings was in the range of 2–100 μm. The thickness of the individual layers can be varied by the variation of deposition conditions. The feasibility of co-deposition of chitosan and heparin has been demonstrated. The proposed mechanism of heparin deposition is based on the use of non-stoichiometric chitosan–heparin complexes. The deposition yield and coating composition have been studied at various deposition conditions. The addition of heparin to chitosan solutions resulted in increasing deposition rate. Composite chitosan–heparin layers were used for the surface modification of HA–chitosan coatings. Obtained results pave the way for the electrophoretic fabrication of novel FGM coatings for biomedical implants with improved blood compatibility. The coatings were studied by X-ray diffraction analysis, thermogravimetric and differential thermal analysis, electron microscopy, and Fourier transform infrared spectroscopy.  相似文献   

19.
Common thermal-spray techniques use the strong acceleration of powder particles to produce dense ceramic coatings with high bond strength. The residence time of the powder particles within the plasma jet is correspondingly low, and only relatively small particles can be molten. In this work, on the contrary, an inductively coupled radio-frequency (RF) inductively coupled plasma (ICP) torch was used to spray large oxide-ceramic powder particles under atmospheric conditions. The slow plasma flow of a RF plasma leads to large residence times of the powder particles, so that the powder size of the feedstock can be 100 μm and more. It was observed that these particles will not be strongly accelerated in the plasma and that their velocity at the moment of impact is in the range of 10 to 20 m/s. Ceramic coatings were ICP sprayed with a low porosity and a high bond strength, similar to direct current (DC) or high-velocity-oxygen-fuel (HVOF) sprayed coatings. The morphology of ICP-sprayed particles on smooth steel surfaces, as a function of the surface temperature, is described and compared with DC plasma-sprayed splats. Furthermore, the degree of deformation was measured and determined by different models, and the pronounced contact zones formed between the pancake and the substrate were investigated. The ICP-sprayed ceramic coatings show some special properties, such as the absence of metastable crystalline phases, which are common in other spray technologies.  相似文献   

20.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号