首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采场结构参数既影响矿山的生产能力,又关系着开采安全。针对某矿分段充填法的采场结构参数采用数值模拟方法进行计算分析,优选安全合理的采场参数。以开采过程中顶板、上中段充填体及上盘围岩的变形特征为指标分析各结构参数下的采场稳定性,提出建议的参数。结果表明,当顶柱厚度为3m时,上盘揭露原岩与顶板交接处会产生塑性贯通区;当顶柱厚度为5m时,长度小于30m的采场顶板稳定性好;当顶柱厚度为7 m时,采场顶板均安全;长度为20~30m的采场上盘围岩最大位移量约为10mm,而40m长度采场其最大位移可达到40.0mm左右。按照优选的结果开展工业试验,结果表明,开挖后的采场顶板和上盘围岩能整体能保持自稳,稳定性较好。因此,建议顶柱厚度设计5m,采场长度选择30m。  相似文献   

2.
针对梅山铁矿塌落界线外矿体开采技术的特点,提出了采用分段空场嗣后充填法,分析了底部结构的布置和回采工艺特点等,并结合自然平衡拱理论,采用计算机仿真模拟技术,对分段空场嗣后充填法回采过程中的围岩应力、位移变化规律及塑性区分布情况进行了计算分析,揭示出顶板岩层拉应力是影响该采场稳定性至关重要的因素。将顶板岩层所受的最大拉应力作为衡量采场稳定性的指标,应用正交试验法对不同采场结构参数进行优化,得出梅山铁矿塌落界线外矿体采用矿房采场跨度14 m、矿柱采场跨度10 m和顶板厚度8 m的结构参数,能保证安全开采的需要。  相似文献   

3.
以青龙沟金矿露天转地下采矿为工程背景,采用测线法对研究区域矿岩进行工程地质调查,获取矿岩结构面信息,并结合室内岩石力学实验,进行岩体质量分级和岩体力学参数估算。采用 Mathews 稳定性图法,分别计算出在未支护情况下,采场顶板、上盘和下盘保持稳定的最大长度分别为 52.5 m、35.84 m 和 12.11 m。综合考虑现场工程地质与施工条件,确定采场的最大可能暴露长度 34 m。应用 FLAC3D 对所确定的采场结构参数进行数值模拟,数值模拟结果表明在采场下盘出现较大范围的塑性破坏,这与稳定图法分析结果相一致。运用经验图表法进行采场锚索支护设计,提出了采场下盘锚索支护结构参数。通过对锚索支护采场进行数值分析结果表明,当在矿体下盘采用锚索支护后,支护后下盘围岩的最大水平位移以及塑性区范围均显著减小,设计的锚索支护参数能够确保下盘稳定。该研究为类似矿山采场结构参数确定及其支护形式选择提供参考。  相似文献   

4.
阮喜清  邱贤阳  张宗国 《采矿技术》2022,22(1):47-49,53
为评价地下采场稳定性及优化结构参数,重新绘制Mathews稳定图与等概率线的合成图.以凡口铅锌矿超宽采场为例,通过工程地质调查获取表征岩体质量的多种指标,利用Mathews稳定图解法得出采场稳定性系数及水力半径,通过合成图评价了采场稳定性概率,得到在现有采场结构参数下,209#S采场顶板及上盘的稳定性概率大于8%、小于60%;209#N采场顶板及上盘的稳定性概率大于60%、小于95%.同时计算出209#S采场的最大安全为跨度5.3 m、209#N采场的最大安全跨度为51.04 m.  相似文献   

5.
本文基于关键层理论,分析了综放采场顶板岩层运动及采场应力分布规律,结合塔山矿前期研究成果,对特厚煤层综放采场煤柱稳定性进行了研究。研究表明:超前支承压力峰值在35-50m之间,影响范围一般为80-100m,最大不超过120m;侧向支承压力影响范围70m,峰值位于30m。当采场顶板稳定时,煤柱宽度小于11m;在采场顶板不稳定时,煤柱宽度可减小为30m,但需对巷道应力集中部位采取加强支护。  相似文献   

6.
为了保证三山岛金矿二步采场的生产能力和开采安全性, 采用三维有限元方法对不同结构参数的二步采场开采稳定性进行分析,优选安全合理的采场参数。通过计算和分析不同结构参数的二步采场在开采过程中顶板和上盘围岩的应力、位移变化特征,得出不同参数的采场稳定情况。结果表明:当采场高度为12 m时,顶板和上盘围岩的拉应力和位移都较大,采场的稳定性较差;当采场宽度大于10 m时,顶板和上盘围岩的拉应力和位移的变化率呈增长趋势,采场稳定性逐渐变差。因此,建议二步采场宽度为10 m,高度10 m。将优化结果应用于工程实践,表明该参数安全合理,保证了矿山安全高效开采。  相似文献   

7.
贵州开磷矿业公司用沙坝矿主体为缓倾斜矿体,采用机械化盘区分段充填采矿法开采,通过研究采场跨度与顶板稳定性之间关系确保了作业人员安全和稳定生产.建立合理矿山开采力学模型后,对不同跨度采场在未支护方案下进行数值模拟分析表明,采场整体位移变化基本服从近对称分布;靠近开挖边界处围岩位移最大,距开挖边界越远,围岩位移越小,且移动方向均指向采空区;采场跨度在20m以内,采场顶板不发生破坏;当超过25m以上时,采场顶板出现较大拉应力,顶板开始发生破坏.  相似文献   

8.
为探讨毛坪铅锌矿所采用的下向分层胶结充填采矿法采场结构参数的合理性,采用数值模拟手段对不同断面尺寸和不同埋藏深度的采场稳定性进行了计算,系统分析了充填体顶板及采场周边应力与塑性区等的变化规律。研究结果表明:随着进路跨度和采深的增加,进路四周拉应力值逐渐增大,当跨度超过5 m后,拉应力值已非常接近充填体抗拉强度;而当采深达到560 m时,拉应力范围几乎扩展到整个围岩,说明采场稳定性下降,存在拉破坏可能性。从本次计算情况看,在现有采深时(采深400~450 m),进路最大跨度不宜超过5 m;而如果维持3.5 m的进路跨度持续向下开采,则适用的最大采深应在600 m左右,否则采场的稳定性难以得到有效保证。  相似文献   

9.
采矿工程中采场结构参数是影响其安全和经济效益的重要因素。采用Mathew法对老厂矿13-8#矿群采场进行结构尺寸设计和稳定性分析。分析结果表明,顶板为稳固性差的玄武岩时,采场最大暴露面积为160m2,采场规格参数为8m×20m或10m×15m;顶板为较稳固的大理岩时,可采取相应的顶板控制措施,增大最大暴露面积,建议采场最大允许暴露面积控制在750m2以下,且在同等暴露面积条件下,可以通过减小采场跨度,增大采场长度来改善顶板稳固性。  相似文献   

10.
陈国利  黄如杰 《现代矿业》2020,36(1):135-136
中钢山东矿业苍山铁矿在回采过程中,采用上向分层充填采矿法进行回采,采场沿矿体走向布置,矿房面积较大,采场暴露时间长,致使采场顶板容易出现局部冒落,甚至大面积的塌落,是采矿产生的重大安全隐患。因此,针对苍山铁矿存在的采场顶板不稳固、易冒落的问题,开展相关支护技术研究,通过分析与比较,选择并确定合理的支护方法和参数,确保采场顶板的稳固,实现了矿体的安全开采。  相似文献   

11.
合理的采矿结构参数是保障金属矿地下开采的前提。为了优化缓倾斜破碎金矿体的采场结构参数,以采场稳定概率大于95%为目标,引进拓展的Mathews稳定图法来优化采场最大跨度和暴露面尺寸,并采用考虑岩梁自重的弹性力学简支梁等理论进行验证。结果表明:当采场长度80 m时,回采进路跨度小于4.36 m时即可保证采场不会破坏;当采场长度80 m时,采场顶板跨度为4.3 m,采场上盘跨度为3.0 m,采场稳定概率能达到95%;优化后的上向进路充填法采场结构参数为3 m×3.5 m。现场工业试验表明:采场结构参数条件下回采过程中采场顶板及围岩未发生垮落及剥落现象,采场稳定性良好。因此,基于拓展的Mathews稳定图法适用于缓倾斜破碎矿体的采场结构参数优化。  相似文献   

12.
合理的采矿结构参数是保障金属矿地下开采的前提。为了优化缓倾斜破碎金矿体的采场结构参数,以采场稳定概率大于95%为目标,引进拓展的 Mathews 稳定图法来优化采场最大跨度和暴露面尺寸,并采用考虑岩梁自重的弹性力学简支梁等理论进行验证。结果表明,当采场长度80 m时,回采进路跨度小于4.36 m时即可保证采场不会破坏;当采场长度80m时,采场顶板跨度为4.3 m,采场上盘跨度为3.0 m,采场稳定概率能达到95%;优化后的上向进路充填法采场结构参数为3 m×3.5 m。现场工业试验表明,该采场结构参数条件下回采过程中采场顶板及围岩未发生垮落及剥落现象,采场稳定性良好。因此,基于拓展的Mathews稳定图法适用于缓倾斜破碎矿体的采场结构参数优化。  相似文献   

13.
采场跨度是影响上向水平分层充填采场回采结构及顶板稳定性的重要参数之一,合理确定其尺寸及支护方式不仅关系到人员作业安全,还关系到矿山经济指标等。通过采用Q系统分级法和能量释放理论,综合确定采场最大极限跨度并采用数值模拟方法对长锚索支护下的支护效果进行评价。现场应用结果表明:在最大采场跨度为15 m,并辅以合理参数的锚索支护时,顶板控制效果明显。  相似文献   

14.
针对铜坑矿空场采矿法的采场结构和地压特点,运用弹性理论和经验公式对采场的顶板厚度进行了分析研究,获得了采场跨度与顶板厚度的理论关系。并结合铜坑矿采场的工程现状,利用各种跨度计算方法,确定出了12~18m跨度下顶板的安全厚度值分别为7.83,8.77,9.73,10.64m,为铜坑矿的安全生产和采场参数优化选择提供了科学理论依据。  相似文献   

15.
白象山铁矿的水文地质条件复杂,采用分层进路充填法开采。利用FLAC3D模拟软件建立流固耦合模型,分析了采场跨度、进路宽度、分层高度和充填体类型对采场顶板稳定性的影响。对模拟结果的极差分析表明,采场跨度对采场顶板的最大沉降量、最大拉应力和塑性区破坏高度起决定性作用,其次是充填体类型、分层高度和进路宽度;最优方案为采场跨度30m,进路宽度10m,分层高度10m,用灰砂比1∶8的胶结尾砂进行充填。  相似文献   

16.
为了研究采场的贫化问题,提出了一种ELOS(超挖深度)的量化指标,以青龙沟采区北矿段为工程背景,采用Mathews稳定性图法,计算得出上盘超挖深度较小,均小于0.5m;下盘超挖深度随着采场长度的增加变化为0.7~1.6m;通过数值计算,采场上盘超挖深度较小且变化不明显,而下盘超挖深度变化较显著,变化范围为0.64~1.07 m。图表法和数值模拟法得出的结果具有一致性,结果表明:在采场开挖时,下盘超挖较严重,应加强采场下盘的支护。  相似文献   

17.
《煤炭技术》2017,(8):65-68
针对103综放工作面可能面临支护强度不足的问题,给出了工作面长度与采场顶板压力之间的关系,并据此确定103工作面合理长度为195 m。通过在工作面安装顶板压力监测设备来分析采场的矿压显现程度。现场监测结果表明:当工作面长度缩短至195 m时,采场支架受载分布合理,煤壁片帮量及顶板下沉量均在可控范围内,支架-围岩关系良好,可以保证工作面安全高效生产。  相似文献   

18.
某矿为薄层状矿体,矿体之间存在以泥质粉砂岩为主的软弱夹层,采场稳定性较差,不利于矿山安全生产。课题组应用3D-σ软件对矿区采场建立三维模型,对2种开采方案、3种采场结构参数进行数值模拟,计算和分析采场回采过程中矿岩体的应力、位移、塑性区及安全率的分布状况,判断采场的稳定性。数值模拟计算结果表明:采场和中段之间均留2 m的连续间柱和顶柱是非常有必要的,抑制顶板变形破坏有明显的作用,但是仍然无法控制采场顶板的破坏;在采场内留2 m×2 m点柱的条件下,点柱间的矿块跨度控制在6 m以内能保证顶板的稳定。通过安全率回归方程计算得出:在满足安全率大于1.15时,点柱间矿块的合理跨度应小于6.027 m。同时为提高采场矿石的回采率,综合考虑最终确定点柱间的矿块跨度为6 m,能达到安全与经济的有效平衡,研究成果为该矿山的安全生产提供理论性指导意义。  相似文献   

19.
黄聪  魏超城  丘永富 《中国矿业》2023,(11):168-177
随着新疆阿舍勒铜矿采深逐渐增加,矿山深部岩体愈加破碎,采场稳定性难以得到保障。为了确保深部矿床安全、高效开采,需要在工程地质调查和岩石力学参数试验的基础上,对采场结构参数与回采顺序进行优化。使用修正Mathews稳定图法,对+150 m中段采场顶板和边帮开展稳定性分析,分析结果表明:当中段高度为50 m,采场长度为矿体厚度的情况下,只需控制采场宽度小于12 m即可保证采场顶板和上盘围岩总是处于无支护稳定区,满足采场安全生产要求。为了确定采场的合理回采顺序,使用FLAC3D有限元模拟软件分别对4种不同回采顺序进行了模拟分析,对比了不同回采顺序下采场的应力、位移、塑性区,最终确定最优回采方案为从矿体南端向北端依次回采。研究结果可为阿舍勒铜矿回采设计提供依据,并能为国内同类矿山的回采设计提供参考。  相似文献   

20.
针对司家营铁矿倾斜急倾斜厚大矿体井下规模化开采的采场稳定性问题,立足充分释放矿岩体承载能力,同时利用注浆支护技术协同维护采场围岩稳定性,形成包含4个承载机构的拱悬挂桥梁支护承载体系。根据拱形承载特性,研究简易的支护计算方法和工程岩体结构内力计算模型,并应用于司家营南区地下矿,确定了在矿房长度方向上布设6排,每排3根长20 m的悬挂锚索。同时,运用UDEC进行数值分析,顶板位移从2.5 m降到0.5 m的计算结果有效验证了支护方案的可靠性,可有效保证司家营南区地下大规模开采安全,确保地表环境不受破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号