首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 208 毫秒
1.
高宇  刘佳  秦跃平 《煤矿安全》2023,(7):109-117
采用煤粒进行瓦斯吸附实验是研究煤基质瓦斯流动机理的基本手段。为探究煤粒形状对煤体瓦斯吸附规律的影响,设计煤粒瓦斯恒温定压吸附实验,得到4种粒度的煤样在不同瓦斯压力下的吸附特征。基于煤基质游离瓦斯密度梯度扩散理论,分别建立圆柱形和球形煤粒瓦斯定压吸附数学模型,并通过有限差分法进行编程解算,后用实验数据来验证模拟结果。发现将煤粒视作球形和圆柱形得到的模拟结果均与实验结果匹配程度较高,证明了煤基质游离瓦斯密度梯度扩散理论的准确性和可靠性;煤样粒径增加时,微孔道扩散系数增大;瓦斯吸附压力对微孔道扩散系数的影响较小,微孔道扩散系数摆脱对瓦斯吸附压力和吸附时间的依赖;相对来说,煤粒的形状对瓦斯吸附数学模型的预测精度影响不大,但2种模型的微孔道扩散系数存在显著差异;当瓦斯吸附压力与煤样粒径固定时,圆柱形煤粒的微孔道扩散系数大于球形煤粒的微孔道扩散系数,约为2倍,主要是由于2种形状有效扩散截面积的差异性。  相似文献   

2.
煤粒瓦斯吸附规律的实验研究及数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
秦跃平  刘鹏 《煤炭学报》2015,40(4):749-753
为研究煤粒瓦斯流动规律,进行了煤粒瓦斯定压动态吸附实验,得到3种粒度煤样在不同瓦斯压力下累积吸附量随时间变化的实测曲线。基于达西定律和朗格缪尔方程,建立了煤粒瓦斯吸附数学模型,编制解算程序对煤粒瓦斯吸附过程进行数值分析,得到煤粒内部瓦斯压力的变化规律及累积吸附量与时间的关系曲线。通过将数值分析结果与实验结果进行对比,发现二者变化趋势吻合良好,由此验证了煤粒瓦斯吸附过程符合达西定律。  相似文献   

3.
煤粒瓦斯变压吸附数学模型及数值解算   总被引:2,自引:0,他引:2       下载免费PDF全文
秦跃平  王健  郑赟  童兴  刘鹏  齐艺裴 《煤炭学报》2017,42(4):923-928
为了验证达西定律是煤粒瓦斯流动的普适性规律,在之前所做的不同形状煤粒的定压吸附解吸及变压解吸实验基础上,设计了封闭空间内煤粒瓦斯变压吸附实验,分别得到42.976,11.600~13.800,3.350~4.000和1.180~1.400 mm四种不同粒径的煤样在0.5,1,2和4 MPa四种初始压力下瓦斯累积吸附量随时间的变化情况。基于达西和菲克定律,分别建立封闭空间内煤粒瓦斯变压吸附数学模型。运用有限差分法计算模型,并编制Visual Basic计算机程序对方程进行解算,得到两种模型在不同时间不同初始瓦斯压力下的瓦斯累积吸附量。通过对比分析实验和数值模拟得到的ln[1-(Q_t/Q_∞)~2]与t关系图,发现封闭空间内煤粒瓦斯吸附过程同样遵循达西定律。这与之前所做的一系列研究所得结论一致,即无论是吸附还是解吸过程,煤粒外部压力变化与否,煤粒形状如何,均可得到达西定律是煤粒瓦斯流动基本规律。  相似文献   

4.
为探究压力对瓦斯吸附规律的影响,设计并组装了瓦斯恒温定压动态吸附实验系统,研究了4种煤样在4组不同初始瓦斯压力下的吸附特性。通过处理实验数据,得到不同初压下的累计瓦斯吸附量随时间变化的实测曲线和吸附速率随时间变化的实测曲线,进而建立了与实测曲线拟合度很高的瓦斯吸附数学模型。结果表明:煤样瓦斯的极限吸附量与压力呈正相关;瓦斯吸附的初压越大,吸附速率越快。  相似文献   

5.
煤粒瓦斯放散数学模型及数值解算   总被引:2,自引:0,他引:2       下载免费PDF全文
秦跃平  王翠霞  王健  杨小彬 《煤炭学报》2012,37(9):1466-1471
为了研究煤粒瓦斯的解吸和放散规律,设计了煤粒瓦斯解吸实验,得到不同粒径煤样在不同初始压力条件下累积解吸量随时间变化的实测曲线。根据达西定律,建立煤粒瓦斯放散的数学模型,运用有限差分法对数学模型进行处理,利用Visual Basic语言编制计算机程序对数学模型进行解算,得出煤粒内部瓦斯压力变化规律和煤粒内不同压力下的累积解吸量。通过对比模拟结果和实验结果,得出瓦斯从煤粒中放散出来符合达西定律。  相似文献   

6.
采用理论分析、实验研究与数值模拟计算相结合的方法,结合煤体瓦斯吸附解吸实验系统对同一煤质不同粒径煤样进行了恒温条件下煤对瓦斯的动态吸附解吸实验。同时,从理论上建立了瓦斯一维非稳态流动的数学模型,利用有限差分方法对球坐标下的瓦斯流动数学模型进行分析,通过对比分析模拟结果和实验结果,得出瓦斯在煤粒中的流动符合达西定律。  相似文献   

7.
王健 《煤炭学报》2015,40(4):781-785
为了进一步验证将煤粒视为规则球形研究得到煤粒瓦斯放散符合达西定律的合理性,选取煤粒的另一种极限形状--圆柱形煤粒进行研究。基于达西定律和菲克定律,分别建立圆柱形煤粒瓦斯放散的有限差分数学模型,编制Visual Basic程序进行数值解算,并进行达西和菲克数值模拟。通过对比圆柱形煤粒的模拟结果和实验结果,得出达西模拟结果与实验结果的吻合程度远高于菲克模拟结果。同时,通过对比圆柱形煤粒和球形煤粒的研究结果,发现瓦斯累积解吸量随时间的变化和煤粒形状无直接关系,从而证实煤粒瓦斯放散服从达西定律。  相似文献   

8.
《煤矿安全》2017,(7):177-180
针对煤粒瓦斯扩散的解析解法存在的问题,推导了单孔扩散模型的数值解表达式,提出煤粒瓦斯扩散的数值解法,同时对比分析了解析解与数值解结果的差异性。分析认为:解析解法仅适用于分析定压扩散实验和球形煤粒,其采用的线性吸附假设也与真实瓦斯吸附规律相违背;数值解法考虑了瓦斯吸附常数、煤体孔隙率和温度等真实煤体参数与外界条件,因此具备一定的优越性;在相同瓦斯扩散系数条件下,解析解法计算的煤层瓦斯扩散速率相较数值解较小;如果通过煤粒瓦斯扩散实验结果反算瓦斯扩散系数,传统的解析解法可能会高估煤层的真实瓦斯扩散系数。  相似文献   

9.
封闭空间内煤粒瓦斯解吸实验与数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究瓦斯在煤粒中流动的基本规律,设计了封闭空间内的煤粒瓦斯解吸实验,分别以菲克和达西定律为基础,建立了该条件下煤粒瓦斯放散的数学模型,通过有限差分的方法进行离散并编制程序进行解算,最终实验和数值模拟都得到了4种粒径的煤样在不同初始压力下累积解吸量随时间的变化关系。根据实验和模拟结果分别绘制ln\[1-(Qt/Q∞)2\]-t关系图进行对比,结果表明:在菲克模拟中,无论扩散参数B如何变化,其结果始终为一条直线;而达西模拟和实验结果有明显的曲线特征并且两者拟合度较高,说明在封闭空间内煤粒中的瓦斯流动更符合达西定律。结合以往研究可知,无论外部压力变化与否,瓦斯在煤粒内的流动都服从达西定律而不是菲克定律。  相似文献   

10.
为了研究煤层中瓦斯吸附解吸过程和瓦斯流动规律,基于国内外现有研究理论成果,设计了瓦斯吸附的实验系统,该系统主要包括温度控制系统、瓦斯吸附系统和数据采集与处理系统。通过自制的煤样,实验研究了同一煤质不同粒度煤样的等温吸附特性。采用定压动态吸附法进行瓦斯吸附实验,指出了瓦斯吸附量、吸附速率与煤样粒度之间的关系规律。通过对3种不同煤样的动态吸附曲线的对比分析,提出了瓦斯吸附量、吸附速率与吸附时间之间的关系式,建立了煤的瓦斯吸附量的数学模型。对于改进现有的抽采方法并提高抽采水平、对于煤与瓦斯的突出预测和煤矿瓦斯灾害的防治均具有理论意义和实际应用价值。  相似文献   

11.
低透气性煤层瓦斯低速渗流时具有非Darcy渗流的特征,为揭示非Darcy渗流现象的渗流机理,开展了包含非Darcy渗流现象的瓦斯渗流与煤岩变形耦合作用规律研究。根据低透气性煤层瓦斯渗流特征,考虑启动压力梯度作用下的非Darcy渗流规律,研究游离瓦斯渗流、吸附瓦斯扩散流动机理和煤岩变形等过程,建立含启动压力梯度的渗流耦合模型,并利用该模型开展本煤层预抽钻孔数值模拟研究,结果表明,考虑启动压力梯度的模拟结果更符合低渗透煤层瓦斯运移规律,依据模拟结果布置井下钻孔,工作面预抽钻孔抽采瓦斯量为1.09 m3/t,抽采效果理想。  相似文献   

12.
温度对煤粒瓦斯扩散动态过程的影响规律与机理   总被引:2,自引:0,他引:2       下载免费PDF全文
根据气体在多孔介质的运移理论,推导出了含瓦斯煤粒的扩散通量、扩散系数与温度分别呈指数函数、幂函数关系。运用自制设备,实验研究了吸附平衡压力为(0.74±0.01) MPa,吸附温度为303 K,解吸环境温度为283~313 K条件下,不同煤阶含瓦斯煤粒的扩散通量与温度的量化关系,确定了3种煤阶煤粒瓦斯放散量随温度变化的修正方法和回归系数,查明了不同煤阶煤粒的瓦斯扩散系数随温度升高的量化变化规律。实验结果表明,前60 min的温度影响回归系数a可在0.011 0~0.012 0之间取值,无烟煤取0.011 0,高变质烟煤可取0.011 5,低变质烟煤可取0.012 0。揭示了温度对含瓦斯煤粒扩散动态过程的影响机理,温度升高增强了甲烷分子的活性、促使孔隙扩张,特别是小孔隙的扩张,大大提高了瓦斯在煤粒中的扩散能力。  相似文献   

13.
为了研究瓦斯有效抽采半径影响因素,测定了煤层透气性系数、煤层瓦斯吸附常数、煤的坚固性系数和煤的工业分析等煤层瓦斯基本参数,建立了均质煤层单孔抽采模型,采用COMSOL数值模拟软件,模拟了不同抽采时间下瓦斯压力变化规律、不同孔深和抽采时间下瓦斯压力变化曲线。研究为类似矿井瓦斯有效抽采半径的设计提供理论基础。  相似文献   

14.
通过对采空区内矸石的特性分析,研究瓦斯在采空区中的扩散规律。建立瓦斯在采空区内扩散的数学模型,描绘了回采中采空区瓦斯的运移与分布的流体动力学原理。给出增大风量后瓦斯分布的算例,由此反映出工作面风压与采空区内部瓦斯压力的动态平衡性。运用质量守恒定律和非线性渗流方程,提出基于Fick扩散定律和Brinkman方程的瓦斯扩散-通风对流运移模型,综合考虑了流体压力梯度和动能作用,比较适合采空垮落区的风流运动和瓦斯对流扩散规律。通过数值模拟并与实验结果对照,研究采煤工作面采空垮落区内瓦斯运移的作用机理。认为采空区内瓦斯扩散的数值模拟的模型是有效可行的,为扩散规律的研究提供理论依据,从而有助于煤矿瓦斯监测与安全管理。  相似文献   

15.
祝捷  唐俊  王琪  王全启  张博  张犇 《煤炭学报》2019,44(6):1764-1770
与气体压力有关的煤层渗透率变化规律是煤矿开采和煤层气开发过程中的重要问题,不同应力条件下,不同类型煤样的渗透率演化特征不同。为了研究瓦斯压力变化过程中煤样渗透性的变化规律,以开滦赵各庄煤矿9号煤层的煤样为研究对象,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,在恒定温度、轴压和围压,降低瓦斯压力的实验条件下测定了煤样应变和瓦斯渗透率。实验结果表明:随着瓦斯压力的降低,煤样收缩应变加剧,渗透率表现为两种变化趋势:逐渐增大和先减小后增大(渗透率回升对应的瓦斯压力小于1. 0 MPa)。瓦斯压力降低至0. 3 MPa时,渗透率为初始条件下(瓦斯压力2. 0 MPa)渗透率的1. 9~2. 9倍。考虑到煤样在径向和轴向的收缩应变数值接近,针对三维变形煤样建立了渗透率模型,模型同时体现了气体压力和气体解吸对渗透率的影响。理论分析表明,降压过程中煤的渗透率将在某一气体压力(反弹气体压力pr)时由降低转为升高。推导的反弹气体压力pr计算公式显示pr的取值由煤样的体积模量K、与吸附效应有关的Langmuir系数εp和pL共同决定;体积模量K与吸附变形系数εp越大,pr越大。值得注意的是,pr的取值与煤样的外部应力以及内部的气体压力无关。结合本文和前人的实验数据,由本文的渗透率模型计算得到了不同应力和瓦斯压力条件下的煤样渗透率变化曲线以及相应的反弹气体压力pr。模型计算结果与实验数据接近,最大相对误差低于8. 9%。研究表明,实验测得煤样的渗透率表现为何种变化趋势,取决于反弹气体压力pr和实验气体压力的关系。当pr≥pmax(实验测点中最大的气体压力值)时,渗透率随着气体压力增大而降低;当pr≤pmin(实验测点中最小的气体压力值)时,渗透率随着气体压力增大而增大;当pminprpmax时,随瓦斯压力的增大,煤样渗透率呈"V"形变化,即先减小后增大。  相似文献   

16.
张磊  王浩盛  袁欣鹏  谷超 《煤炭工程》2022,54(7):104-108
为揭示煤岩变形对煤层瓦斯抽采渗流特性的影响,开展了煤层瓦斯抽采气固耦合问题研究。首先,考虑煤吸附解吸变形、孔隙压力及渗透性变化对瓦斯抽采的影响|然后,根据达西定律,建立以有效应力及吸附应变为耦合媒介的煤层瓦斯渗流和煤岩变形气固耦合方程|最后,以沙曲矿24208工作面为工程背景进行抽采煤层位移、吸附应变和瓦斯渗流数值模拟,并对比分析煤层瓦斯压力、煤层渗透率和瓦斯抽采量的耦合效应。结果表明:抽采后钻孔周围煤体位移呈增大趋势,煤体因瓦斯解吸收缩变形,距抽采孔越近应变量越大|抽采初期煤层瓦斯压降梯度大|煤层渗透率随抽采时间呈增大趋势,距孔越近增幅越大|初期钻孔瓦斯抽采量较大但降幅较快,后趋于稳定,对比发现模型抽采量计算结果与实际抽采数据较为一致。  相似文献   

17.
为分析煤层气地面预抽效果影响规律,采用Comsol数值模拟软件,对在不同工况的地应力和储层压力条件下煤层气地面预抽进行数值模拟研究,结果表明:随着煤层中地应力增大,煤层基质孔隙率下降、裂隙趋于闭合,致使煤层渗透率降低,减小了气体在孔隙和裂隙中的渗流速率,最终导致瓦斯产出速率和产气量的下降;储层压力与煤层气产出速率呈正相关关系,储层压力越大,瓦斯产出率越高同时累计产气量也越高;随着瓦斯抽采时间增加,煤层渗透率逐渐增大,且储层压力越大煤层渗透率变化越明显。  相似文献   

18.

为了研究原生煤和构造煤的吸附扩散特性,采用甲烷吸附装置和解吸装置对2种煤样进行了实验。结果表明,构造煤的极限甲烷吸附量是原生煤的1.18倍,并且在相同甲烷吸附压力下构造煤的吸附能力强于原生煤。当甲烷吸附平衡压力为0.74 MPa和2 MPa时,构造煤的固定扩散系数分别是原生煤的7.3倍和4.5倍,表明构造煤的初始气体扩散能力远高于原生煤。2种煤样的时变扩散系数都随着解吸时间的推移先快速降低后趋于稳定。构造煤的扩散衰减系数在0.74 MPa和2 MPa气体平衡压力下分别达到了96.6%和95.8%,远大于原生煤的扩散衰减系数38.1%和45.7%。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号