首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
以碳作为还原剂,对某镜铁矿0~15 mm粒级粉矿进行了回转窑磁化焙烧-磁选试验研究。结果表明,还原剂与镜铁矿配比为2.5%,在焙烧温度820 ℃、焙烧时间30 min条件下经回转窑磁化焙烧,焙烧矿磨至-0.048 mm粒级占80%,在磁场强度120 kA/m条件下弱磁选获得铁精矿,其中给矿粒级0~0.5 mm所得弱磁选精矿平均全铁品位57.27%、平均铁回收率83.24%; 0.5~1.0 mm粒级所得弱磁选精矿平均全铁品位57.55%、平均铁回收率82.92%; 给矿粒级1~5 mm所得弱磁选精矿平均全铁品位57.58%、平均铁回收率89.31%,给矿粒级5~15 mm所得弱磁选精矿全铁品位58.36%、铁回收率84.40%; 全粒级弱磁选精矿平均全铁品位57.70%、平均回收率84.97%。  相似文献   

2.
鄂西高磷鲕状赤铁矿因其铁矿物嵌布关系复杂,在磁化焙烧过程中还原度难以控制,极易产生“过还 原”和“欠还原”现象。 通过磁化焙烧温度、焙烧时间、还原剂用量、磨矿细度条件试验,查明了高磷鲕状赤铁矿最佳煤 基磁化焙烧条件。 结果表明:在焙烧温度为 800 ℃ 、焙烧时间 90 min、还原剂用量 15%的条件下,使用磁选管进行选 别,可以获得铁品位 58%左右的铁精矿,铁回收率可达 90%。 磁选流程试验结果表明,对中矿进行再磨再选后,磁选 精矿铁品位提高至 59. 42%,铁回收率为 89. 23%。 研究结果为使用磁化焙烧—磁选工艺利用此类极难选铁矿提供了 理论支撑和技术参考。  相似文献   

3.
回转窑磁化焙烧是目前处理镜铁山镜铁矿石的有效方法,但是0~1 mm粒级镜铁矿不能直接进入回转窑磁化焙烧,磨矿造球工艺又过于复杂。为开发利用0~1 mm粒级镜铁矿资源,采用制粒-磁化焙烧-弱磁选工艺进行试验。结果表明:在外配兰炭用量为2.5%、膨润土用量为1%、水用量为8%时配制成粒度为3~5 mm的小球,小球经100 ℃烘干后,在焙烧温度为750 ℃、焙烧时间为60 min条件下磁化焙烧,焙烧产品磨细至-0.045 mm占80%,经磁场强度为80 kA/m弱磁选,获得了全铁品位为52.85%、回收率为86.33%的精矿指标,为0~1 mm粒级粉矿的利用提供了一种新思路。  相似文献   

4.
酒钢镜铁山铁矿石直接还原-磁选试验研究   总被引:1,自引:1,他引:0  
以高炉除尘灰为直接还原剂, 针对镜铁山式难选铁矿石进行了直接还原-磁选试验研究。结果表明, 高炉除尘灰有较好的还原效果, 在配比为30%、焙烧温度为1 200 ℃、焙烧时间为60 min的条件下, 可以获得铁品位93.45%、铁总回收率为87.14%的还原铁粉。研究表明, 酒钢镜铁山矿直接还原制备还原铁粉是可行性的, 同时为高炉除尘灰的开发利用找到了一个新的途径。  相似文献   

5.
多年来,镜铁山桦树沟矿区V矿体矿石利用率低,为充分发挥V矿体矿石产能,并确保矿区各矿体之间的采掘关系平衡,针对复杂难选的V矿体氧化铁矿石进行块矿预选—竖炉焙烧—磁选—反浮选工艺条件试验研究。在原矿TFe品位为25.92%,主要矿物赤(镜)铁矿、褐铁矿及菱铁矿嵌布粒度较细,脉石矿物SiO2品位高达40.10%的条件下,经块矿预选抛废13.33%后,在还原剂质量比为4%、温度为650℃条件下还原焙烧45~65min,然后两段阶段磨矿-三段磁选,磁选精矿再磨作业后,添加抑制剂苛性淀粉及阳离子捕收剂YG-328B,进行一粗一精四扫常温反浮选,最终取得精矿TFe品位为61.06%、SiO2含量为6.86%、铁回收率为75.40%的良好指标,实现了V矿体矿石资源的有效利用。  相似文献   

6.
为了提高某低品位菱铁矿的铁品位,采用了煤基直接还原-磁选工艺,对菱铁矿块矿进行了焙烧条件试验。结果表明:在焙烧温度1050℃,焙烧时间100 min,菱铁矿粒度10~16 mm,煤的粒度0~5 mm,煤矿质量比1.5:1的条件下进行还原焙烧,可得到金属化率93.13%的焙烧矿;该焙烧矿在磨矿粒度为-0.074 mm 80%以上,磁场强度为0.1 T,磁选时间为15 min的条件下进行磁选试验后可得到精矿铁品位为91.11%,铁回收率为97.15%的铁粉。且-25 mm的菱铁矿块矿全粒级直接还原效果良好,焙烧矿的金属化率可达到92.6%以上,磁选后的精矿铁品位高达89.4%,回收率在93.5%。  相似文献   

7.
张茂 《矿冶工程》2021,41(1):98-100
采用锌挥发焙烧-磁选回收铁工艺流程回收利用高锌含铁尘泥, 研究了焙烧、磁选工艺参数对回收效果的影响。结果表明, 含铁尘泥在焙烧温度1 200 ℃、焙烧时间90 min、还原剂用量15%条件下还原焙烧, 锌挥发率达97.10%; 焙烧渣经一粗一精弱磁选, 可获得铁品位61.42%、铁回收率86.98%的铁精矿。该工艺流程可为高锌含铁尘泥的规模化工程利用提供技术支撑。  相似文献   

8.
为探究不同粒度(-13 mm、-8 mm、-2 mm)的鄂西高磷鲕状赤铁矿直接还原焙焙烧同步脱磷效果, 进行了直接还原焙烧-磁选试验研究, 考察了焙烧时间、焙烧温度、还原剂用量以及脱磷剂用量对直接还原效果的影响。结果表明: 直接还原焙烧较大粒度的高磷鲕状赤铁矿是可行的, 随着粒度的增大, 铁的品位并没有下降, 但是回收率有所下降, 而且达到最佳条件所需的温度提高、焙烧时间延长、还原剂用量减少、脱磷剂A的用量增加、脱磷剂B的用量变化不大。-13 mm粒度原矿直接还原焙烧-磁选在最佳条件下可得到铁品位93.39%, 铁回收率83.58%, 磷含量0.094%的直接还原铁。  相似文献   

9.
以褐煤、烟煤、无烟煤和兰炭作为还原剂, 对低品位红土镍矿进行了直接还原焙烧-磁选实验研究。结果表明, 还原剂种类、粒度和用量对还原过程有较大影响, 其中褐煤作为还原剂时还原效果最好。最佳实验条件为: 红土镍矿原料粒度-0.075 mm, 还原剂(褐煤)粒度为-0.25 mm、用量4%, 焙烧温度1 200 ℃, 焙烧时间90 min, 焙烧后焙砂磨细至-0.05 mm, 在磁场强度0.3 T下粗选再在0.1 T下精选, 可得到镍品位3.2%、镍回收率82%、铁品位65%、铁回收率69%的镍铁精矿。  相似文献   

10.
马钢罗河矿选矿厂铁尾矿TFe品位高达13%以上,具有一定回收价值。采用预富集—悬浮磁化焙烧—磁选工艺对罗河矿尾矿开展试验研究。结果表明:试样经一阶段磁选—磨矿—二阶段磁选,磁选混合精矿1粗2精2扫浮选流程分选后,获得的预富集精矿铁品位为29.17%、铁回收率57.91%、硫含量0.402%;预富集精矿在焙烧温度540℃、还原时间30 min、还原气体浓度60%、气体流量600 mL/min、还原剂H2与CO体积比为3∶1、焙烧产品磨矿细度-0.023 mm占95%、磁选场强159.2 kA/m的条件下,最终可获得精矿铁品位64.30%、回收率45.90%、S含量0.110%的技术指标。磁选精矿中主要铁矿物为磁铁矿,且磁性铁矿物中铁的分布率高达98.26%,脉石矿物主要为石英,含量为6.32%。悬浮磁化焙烧—磁选技术有效地回收了尾矿中的铁元素,为马钢罗河矿尾矿的开发利用提供了技术支撑。  相似文献   

11.
为解决酒钢镜铁山镜铁矿竖炉焙烧熟料采用磁滑轮预选-欠烧矿二次焙烧后抛废-磨矿-弱磁选工艺处理所存在的磨矿效率、精矿铁品位和铁回收率均较低等问题,进行了选矿试验研究。结果表明,原料破碎至0~5 mm后经粉矿干选,干选精矿磨矿-弱磁选,干选中矿二次焙烧-磨矿-弱磁选,最终可获得铁品位为58.31%,回收率为84.39%的铁精矿,粉矿干式抛尾产率为7.56%、铁品位为7.75%,需进行二次焙烧的中矿产率为18.03%。与现场生产指标相比,新工艺精矿铁品位高3个百分点左右,铁回收率高2个百分点左右。因此,新工艺是处理现场焙烧矿的合适工艺,具有节能减排、降本提质的效果。  相似文献   

12.
梅山铁矿石为磁铁矿-赤铁矿混合型铁矿石,铁品位为37.82%。现场采用不同的工艺分别对50~20、20~2、2~0.5 mm粒级进行预选,不仅预选尾矿铁品位较高,且50~20 mm粒级跳汰预选抛尾量非常低、耗水量大、生产指标不稳定、设备故障率也高。为了改善预选效果,进行了系统的选矿试验。结果表明,将现场50~20 mm粒级再破碎至20~0 mm并相应分级后,-0.5 mm粒级采用湿式筒式弱磁选+立环脉动高梯度强磁选,2~0.5 mm粒级采用筒式弱磁选+立环脉动高梯度粗粒强磁选,20~2 mm采用筒式中磁干选+辊式强磁干选,取得了铁品位为56.31%、铁回收率为3.65%的铁精矿,以及铁品位为40.81%、铁回收率为89.92%的预选精矿,预选尾矿铁品位16.75%、产率达11.59%,预选指标较好。  相似文献   

13.
梅山铁尾矿强磁再选粗精矿深度还原试验   总被引:1,自引:0,他引:1  
杨龙  韩跃新  袁致涛  高鹏 《金属矿山》2012,41(7):148-150
由于梅山铁矿石中弱磁性铁矿物含量很高,导致梅山尾矿的铁品位较高。梅山铁矿选矿厂对该尾矿进行了强磁再选,获得了铁品位为31.80%的再选粗精矿。为获得合格的铁产品,东北大学对该再选粗精矿进行了深度还原工艺技术条件研究,结果表明,在还原温度为1 275 ℃,还原时间为60 min,料层厚度为30 mm,配碳系数为2.0,煤粉粒度为-2.0 mm情况下进行深度还原,金属化率为89.20%的还原物料经1段弱磁选可获得铁品位为80.05%、回收率为98.03%的弱磁选铁粉。  相似文献   

14.
湖南祁东某贫铁矿石铁品位为31.77%,矿石中铁主要以赤铁矿形式存在,赤铁矿多呈微细粒嵌布。为开发利用该矿石,采用还原焙烧—弱磁选工艺进行了选矿试验。结果表明,制备还原球团时,添加内配煤可以改善小球内部的还原气氛,外配煤与内配煤协同使用,可使小球还原更加充分、均匀;在添加剂用量为3%、m(C)∶m(Fe)为0.3时制成直径3~5 mm的小球,小球干燥后在外配煤用量为20%、还原温度为960℃、还原时间为35 min时进行焙烧可以得到铁金属化率为86.15%的焙烧产品,焙烧产品在磨矿细度为-0.045 mm占95%、磁场强度为183 k A/m条件下弱磁选,获得了铁品位为80.23%、Si O2含量为9.48%、铁回收率为80.78%的铁精矿,实现了该铁矿资源的高效回收。  相似文献   

15.
实现复合铁矿石的高效预选,提高入磨品位,简化磨选工艺流程,减少磨选作业处理量,降低生产成本的关键是分选设备。北京矿冶研究总院开发出了适合复合铁矿石预选的NLCT系列外磁式磁选机,该类型设备采用外置弧形磁路设计,分选筒内轴向分选,可实现强磁性矿物和弱磁性矿物的高效富集。采用NLCT0607型外磁式磁选机对粒度为12~0 mm,Fe品位为26.49%的安徽霍邱地区某低品位磁铁矿-镜铁矿混合铁矿石进行预选,抛尾产率达20.90%,精矿Fe回收率达92.35%。对粒度为10~0 mm,Fe品位为20.30%,TiO2品位为7.88%的攀西红格矿区某钒钛磁铁矿石的预选试验,抛尾产率达25.92%,精矿Fe、TiO2回收率分别达89.52%和91.01%;该系列设备的现场工业应用取得了与实验室非常接近的生产指标。因此,NLCT系列外磁式磁选机在复合铁矿石的高效分选方面具有广阔的应用前景。  相似文献   

16.
甘肃镜铁山矿采用竖炉磁化焙烧—弱磁选—反浮选工艺处理100~15 mm的镜铁矿石,可获得铁品位58.5%左右、铁回收率78%左右的铁精矿;对15~0 mm的粉矿采用磨矿—强磁选工艺处理,仅能获得铁品位为47.5%左右、铁回收率为60%左右的铁精矿。为了提高粉矿分选指标,改善烧结料的品质,对粉矿中的15~5 mm粒级进行了磁化焙烧—弱磁选试验。结果表明,在煤粉与试样的质量比为2%,煤粉粒度为1~0 mm,焙烧温度为810℃,焙烧时间为60 min,焙烧产物磨矿细度为-0.074 mm占80%,弱磁选磁场强度为91.56 kA/m条件下,可获得铁品位为55.80%、铁回收率为83.97%的铁精矿。  相似文献   

17.
大量高铁铝土矿因氧化铁含量高、矿物嵌布关系复杂而处于待开发状态。为确定四川某高铁铝土矿的高效开发利用方案,对还原焙烧—弱磁选提铁—铝溶出的铝铁高效分离回收工艺中主要影响因素——焙烧制度、焙烧产物磨矿细度及弱磁选磁场强度进行了单因素条件试验。结果表明,在还原焙烧试样粒度为0.18~0 mm、配碳系数为2.0、焙烧温度为1 350℃、焙烧时间为20 min、焙烧产物磨矿细度为-0.074 mm占91%、弱磁选磁场强度为60kA/m情况下,可取得铁品位为89.83%、铁回收率为84.08%的金属铁粉,Al2O3浸出率为69.35%,较好地实现了铝、铁分离。  相似文献   

18.
红土镍矿深度还原-磁选试验研究   总被引:2,自引:0,他引:2  
采用深度还原-弱磁-强磁工艺对低品位红土镍矿进行了开发利用研究,重点研究了深度还原合适的温度、还原时间、配碳系数、料层厚度、强磁精矿返回量等参数。研究表明,适宜的深度还原条件为:还原温度1 275 ℃、还原时间50 min、配碳系数2.5、料层厚度25 mm、强磁精矿返回量占原矿量的25%,还原产物经弱磁选(场强为130 kA/m),可获得镍、铁品位分别为6.96%、34.74%,镍、铁总回收率分别为94.06%、80.44%的优质镍铁精矿产品;同时富含大量细小镍铁颗粒的强磁精矿是红土镍矿深度还原的优质成核剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号