首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
攀枝花白马选矿厂年产130万t选钛粗渣,铁、钛品位低,暂未利用,直接排入尾矿库。为确定回收利用其中铁、钛资源的可行性,进行回收试验。采用新型ZCLA强磁设备对粗渣进行预先抛尾,可抛除产率40. 19%、Ti O2品位1. 48%的合格尾矿;抛尾精矿经一段磨矿—弱磁选除铁—除铁精矿二段磨矿—1粗2精弱磁选流程选铁,可获得产率8. 80%、TFe品位56. 63%、回收率37. 53%的铁精矿;除铁尾矿经强磁选—螺旋溜槽重选—磁选—浮选原则流程选别,可获得产率0. 47%、Ti O2回收率7. 18%的钛精矿。预测年产铁精矿11. 44万t、钛精矿0. 61万t。根据铁、钛选矿成本和市场行情计算,白马选钛粗渣中铁、钛具有一定的回收利用价值。  相似文献   

2.
南非某风化壳沉积钛铁矿石铁品位为19.06%、Ti O2品位为9.90%。为开发利用该矿石,对其进行了选矿试验研究。结果显示:采用干式强磁选抛尾—弱磁选除铁—螺旋溜槽重选—摇床精选的工艺流程可以获得铁品位49.05%、铁回收率33.75%、Ti O2品位21.02%、Ti O2回收率27.70%的铁精矿,铁品位38.84%、铁回收率16.70%、Ti O2品位47.12%、Ti O2回收率39.02%的钛精矿。在此条件基础上进行了不同工艺流程对比试验,综合各因素,推荐采用强磁干选抛尾—螺旋溜槽粗选—弱磁除铁—螺旋溜槽精选—摇床精选的试验流程。  相似文献   

3.
国外某块状铬铁矿原矿Cr_2O_3品位28.43%,铁品位9.23%,对该矿石进行了物理分选探索试验。研究内容包括在不磨细条件下进行强磁选、重选跳汰、重选摇床试验,摇床磨矿细度试验,重选中矿回收试验,重选尾矿强磁选回收铬铁矿试验,螺旋溜槽重选粗选-重选中矿摇床精选试验及实验室扩大试验等。最终确定采用螺旋溜槽粗选抛尾-粗精矿摇床精选再选的工艺流程,获得了铬精矿产率45.59%、Cr_2O_3品位51.37%,Cr_2O_3回收率82.38%的选别指标,精矿产品里有害杂质硫、磷和二氧化硅含量不超标,为0.003%、0.011%和4.78%,Cr_2O_3/FeO为9.80,完全能达到冶金用铬精矿工业指标要求。  相似文献   

4.
攀西地区某强磁选钛粗精矿,按0.1 mm粒度分级后,+0.10 mm粒级1粗1精摇床重选抛尾可抛掉产率42.16%、TiO_2品位4.00%的合格尾矿;抛尾精矿-0.4 mm粒级经干式除铁—1粗2精电选可获得TiO_2品位47.36%、回收率25.29%的钛精矿;+0.4 mm粒级抛尾精矿、电选中矿再磨后与-0.10 mm粒级进行脱硫浮选—1粗2精闭路浮选选别,可获得TiO_2品位47.01%、回收率52.88%的浮选钛精矿,综合指标较好,实现了该钛粗精矿钛的高效富集,可作为其再选方案。  相似文献   

5.
曾茂青 《矿冶》2014,23(5):5-8
云南建水半风化钛铁矿入选品位Ti O25.42%、TFe 12.02%,主要的钛矿物为钛铁矿,主要的铁矿物为钛磁铁矿。对于高梯度强磁粗选抛尾所获得的钛粗精矿,常采用"摇床"传统工艺精选。而本研究则创新性地提出了"螺旋溜槽—强磁"联合精选新工艺,解决了摇床因占地面积大、台数多,难以建较大规模选矿厂的难题。原矿经"粗磨—强磁抛尾—螺旋溜槽精选—钛粗精矿再磨—强磁再精选"新工艺选别后,获得了钛精矿产率4.56%、Ti O241.63%、钛回收率38.23%;铁精矿TFe 54.74%、铁回收率14.80%的较好指标。  相似文献   

6.
某低品位钛铁矿TFe含量为10.20%、TiO2品位为4.55%,属于低铁低钛等级矿石。矿石成分简单,主要工业矿物为钛铁矿和磁铁矿,主要脉石矿物为角闪石、长石。针对该矿石,首先进行了重磁拉抛尾,获得了TFe含量为12.31%,TiO2品位为5.81%的抛尾粗精矿;抛尾粗精矿经磨矿—选铁处理后,采用"螺旋溜槽+干式磁选"工艺,获得了TiO2品位为46.17%的钛精矿产品,回收率为46.72%。实现了矿石中铁、钛矿物的高效回收。  相似文献   

7.
菲律宾某铬矿中的铬矿物以铬尖晶石的形式存在,脉石矿物以蛇纹石为主。试验样品Cr2O3含量23.47%,磁选、螺旋溜槽、摇床试验研究表明,该矿石采用摇床重选工艺较为合适。采用磨矿—摇床抛尾—中矿再选工艺,最终选别指标为精矿产率57.19%,Cr2O3品位37.46%,Cr2O3回收率88.78%。  相似文献   

8.
在实验室条件下,对南非某钛铁矿进行初步选矿试验研究,用以初步确定该类型钛铁矿可选性及选矿工艺方法。该类型原矿TFe品位20.46%,TiO_(2)品位10.08%,通过200 mT干式磁选进行分选,获得干式磁选尾矿。随后对该尾矿采用螺旋溜槽-摇床重选-湿式弱磁选工艺进行分选,最终获得TiO_(2)品位为46.4%的钛精矿。为进一步提高钛精矿品位,在实验室条件下采用浮选工艺进行分选试验,在磨矿细度为-0.074 mm含量占比为78%及粗选捕收剂用量400 g·t^(-1)和起泡剂用量100 g·t^(-1)条件下,经过一粗、一精、二扫浮选流程进行选别,最终可获得含TiO_(2)为49.1%的合格钛精矿。通过上述试验研究,该钛铁矿可采用磁-重-浮联合工艺流程,以获取合格品位要求的精矿。  相似文献   

9.
攀枝花某钒钛磁铁矿选厂采用两段强磁选—浮选工艺回收钛铁矿,在将高频振动筛筛孔宽由0.18 mm优化至0.40 mm后,浮选精矿TiO_2品位由46.15%提升至46.55%,浮选尾矿TiO_2品位由4.32%提高至4.87%,精矿TiO_2回收率下降了 2个百分点。为解决金属流失问题,对浮选尾矿进行了钛回收试验。结果表明,浮选尾矿采用1次螺旋溜槽重选(分矿阀距内缘距离为30 mm)—擦磨—1次强磁选(238.85 kA/m)流程处理,获得了作业产率8.27%、TiO_2品位和作业回收率分别为17.16%和29.13%的强磁选精矿,精矿品位达到现场一段强磁选精矿品位,现场工艺优化的经济效益和社会效益显著。  相似文献   

10.
攀西某钒钛磁铁矿选厂选钛尾矿TiO_2品位6.46%,含铁12.34%,60.77%的钛以钛铁矿的形式存在,较难选的粗粒级和超细粒级含量较高。为回收利用该二次资源中钛,进行钛的再回收试验。结果表明,矿样经一段弱磁除铁—一段强磁选—+0.154 mm粒级磨矿至-0.074 mm64.41%—二段弱磁选除铁—除铁尾矿与超声波脱药后的-0.154 mm粒级合并—二段强磁选—强磁尾矿1次浮硫—浮硫尾矿1粗3精1扫选钛,可获得产率5.02%、TiO_2品位47.06%、TiO_2回收率36.74%的钛精矿,硫含量低于0.2%,同时可综合回收铁和硫。试验结果可为建设选钛尾矿再回收工艺生产线提供技术依据。  相似文献   

11.
针对云南某钒钛磁铁矿试样中钒钛磁铁矿和钛铁矿分别呈粗、细粒分布并含有大量弱磁性金云母的特点,采用"磨矿-弱磁选铁-高梯度磁选、螺旋溜槽粗选-钛粗精矿细磨-弱磁选铁-高梯度磁选、摇床精选钛"新工艺,获得铁品位和V2O5品位分别为65.97%和0.93%的钒钛磁铁矿精矿,铁回收率和V2O5回收率分别为54.98%和57.75%,及Ti O2品位和Ti O2回收率分别为42.26%和31.19%的钛精矿,为该类矿产资源的开发利用奠定了技术基础。  相似文献   

12.
为了综合回收攀枝花低品位钒钛磁铁矿石,对其进行了详细的试验研究。结果表明,采用干式抛尾与阶段磨矿、阶段选别的选矿工艺流程,可获得产率13.65%、TFe品位54.14%、回收率40.56%的合格铁精矿,选铁尾矿采用粗细分选工艺流程可获得产率10.80%、Ti O2品位47.08%、回收率63%的合格钛精矿。  相似文献   

13.
萨尔哈布塔勒蓝晶石矿产于石榴蓝晶二云母石英片岩中,成分复杂,给有效分选带来难度。针对这个特点,创新性的采用"原矿-破碎-干磁抛尾-磨矿-螺旋溜槽抛尾-再磨-蓝晶石浮选-磁选除铁"工艺流程方案回收蓝晶石矿,试验结果为:蓝晶石精矿产率7.15%,Al_2O_3品位58.74%,Al_2O_3回收率20.97%,蓝晶石矿物量95.26%,矿物回收率75.53%;溜槽尾矿采用"筛分-重选-磁选"工艺流程回收白云母,干磁尾矿采用"重选-筛分-磁选"工艺流程回收石榴子石、白云母、黑云母。试验结果为:白云母精矿产率17.57%,矿物量98%;黑云母精矿产率9.48%,矿物量90%;石榴子石精矿产率3.36%,矿物量95%。试验表明该矿除蓝晶石矿物可利用外,伴生石榴子石、白云母、黑云母等矿物也可综合回收利用。最终产品蓝晶石精矿质量指标达到LJ-52国家标准要求。  相似文献   

14.
赵阳  刘泽伟 《现代矿业》2020,36(1):156-158
为了解采用物理提纯工艺处理新疆某难选赤褐铁矿石的效果,进行了单一重选与强磁选—重选联合流程选矿试验。结果表明:矿样在磨矿细度为-0.074 mm占63%的情况下,采用螺旋溜槽粗选—高品位中矿摇床精选—螺旋溜槽粗选总尾矿螺旋溜槽扫选,可获得铁品位超过62%、回收率为27.95%的混合铁精矿;采用立环脉动高梯度强磁选—摇床精选流程处理,可获得铁品位为63.08%、回收率为21.56%的摇床精矿;采用立环脉动高梯度强磁选—螺旋溜槽精选流程处理,可获得铁品位为62.65%、回收率为17.28%的铁精矿。试验结果表明,物理提纯工艺不适合该矿石的处理。  相似文献   

15.
某超低品位钒钛磁铁矿选铁尾矿TiO_2品位极低,仅为3.33%,可回收金属矿物为钛铁矿,主要脉石矿物为橄榄石、辉石、长石和角闪石;品位低、橄榄石含量高是该矿石的两大特点,如何高效预富集及分选成为制约其开发利用的关键因素。针对选铁尾矿性质,采用强磁抛尾—强磁精矿再磨—摇床富集联合预选工艺可将TiO_2品位由3.33%提升至29.19%,作业回收率50.12%;预选精矿进一步浮选可获得TiO_2品位45.80%、浮选作业回收率为76.68%的钛精矿产品,对选铁尾矿TiO_2回收率达到38.43%,通过联合工艺使超低品位钒钛磁铁矿具备经济利用价值。  相似文献   

16.
采用重选—强磁选联合工艺回收新疆某白钨矿,螺旋溜槽抛尾—摇床精选工艺获得了较好的重选指标:重选精矿WO3品位52.50%,回收率78.01%;重选中矿WO3品位2.69%,回收率4.90%。重选精矿再磨后强磁选可以获得钨精矿WO3品位65.06%,回收率76.44%。   相似文献   

17.
某低品位微细粒铬铁矿Cr_2O_3品位较低,为6.82%,且泥化现象严重。采用"重选前分级—两段螺旋溜槽—粗细分级—两段摇床"工艺流程处理此铬铁矿,最终可以获得Cr_2O_3品位49.20%,回收率54.39%的精矿。最终尾矿中TFe品位为43.11%,回收率为94.74%。对最终尾矿中的铁进行回收,经过两段强磁选试验,所得精矿TFe品位为45.25%,回收率为27.51%,微细粒级的泥化现象导致了选别效果不理想,有待在后续试验中进一步考察研究。  相似文献   

18.
实际考察了近十个铁矿尾矿点,通过尾矿性质研究和镜下鉴定,表明尾矿中确有金存在,金品位为0.4g/t左右,金呈单体和连生体存在。试验矿样取自某磁选厂一段磁选尾矿,用摇床、离心选矿机、螺旋溜槽和铺毯溜槽分别进行了初步探索试验,四种方法均能使金得到富集,精矿品位为1.5~15g/t。确定采用螺旋溜槽粗选、摇床精选流程富集金。试验结果表明,可得到品位4.08g/t、产率2%的金精矿,达到氰化提金的品位要求,具有回收价值。  相似文献   

19.
朝鲜某地区钛铁矿矿砂主要元素为铁、钛.铁矿物主要为钛铁矿,少量为磁铁矿.钛铁矿单体仅占43.70%,部分钛铁矿包裹脉石矿物,且包裹体细小.试验对溜槽重选,溜槽重选粗精矿磨矿-摇床重选、原矿分级重选等工艺流程进行了试验研究,最后确定采用溜槽重选-摇床再选-摇床精矿弱磁选和摇床中矿再磨-摇床-精矿弱磁选的工艺流程,试验获得铁精矿铁品位61.30%、回收率5.11%,钛精矿TiO2品位46.81%、TiO2回收率71.62%.  相似文献   

20.
戴新宇  余德文 《金属矿山》2007,37(12):128-130
承钢黑山选钛厂二段强磁尾矿中尚含有一定量的钛铁矿。为减少资源浪费,进行了从该尾矿中回收钛的选矿试验研究。结果表明,采用螺旋溜槽粗选-摇床精选单一重选流程,可得到TiO2品位为32.12%、TiO2回收率为38.02%粗钛精矿,该产品可作为钢铁厂护炉原料销售;采用螺旋溜槽粗选-摇床精选-硫浮选-钛浮选联合流程,可得到TiO2品位在47%左右的合格钛精矿,同时可获得S品位在39%以上的的硫精矿副产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号