首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用自制的胺类萃取剂N1633作萃取剂, 考察了其在钨萃取冶金中的性能。当有机相组成为40%N1633+40%异辛醇+磺化煤油(体积比), 在pH=8.27、相比(O/A)为1∶1、振荡时间10 min、萃取温度25 ℃时, 对WO3含量116.25 g/L的钨酸钠溶液进行萃取, 单级萃取率大于99%。绘制了N1633的萃取等温线, 经过三级萃取饱和容量达到109.03 g/L。用2.5 mol/L的氨水对负载有机相进行反萃, 相比2.5∶1时, 反萃液中WO3浓度达到174.31 g/L。绘制了负载有机相的反萃等温线, 理论上以相比1.25∶1进行四级逆流萃取可将有机相中的钨基本反萃, 反萃液中WO3的饱和反萃浓度达到202.82 g/L。采用0.6 mol/L的硫酸以相比2∶1进行酸化再生后, N1633仍具有良好的萃取性能。  相似文献   

2.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

3.
Mac10 铜萃取剂的性能研究   总被引:4,自引:0,他引:4  
采用国产化工原料合成了Mac10 铜萃取剂, 进行了萃取剂用量、有机相与无机相相比(O/A)、萃取平衡pH 值、萃取动力学、萃取热力学、反萃动力学试验、反萃剂酸度试验。结果表明, Mac10 铜萃取剂具有良好萃取性能, 当萃取剂用量为15%, 相比(O/A)为75%, 萃取平衡pH =3, 萃取时间为3 min, 萃取温度为298 K, 反萃取时间为2 min, 反萃取剂酸度为硫酸浓度180 g/L 时, 萃取率不小于93%, 反萃取率不小于96%, 且水相中Cu2+浓度愈高, Mac10 对铜的萃取性能愈好。  相似文献   

4.
石煤酸浸提钒浸出液萃取试验研究   总被引:4,自引:0,他引:4  
王一  张一敏  黄晶  刘涛  李望  张国斌 《金属矿山》2013,43(3):100-103
以湖北某地石煤为原料,对提钒酸浸液萃取过程的工艺技术参数进行了研究。结果表明:用Na2SO3对酸浸液进行预处理可以高效排除Fe3+对V4+萃取的影响,提高相同萃取级数下的萃取率;萃取适宜的萃原液pH=2,水相与有机相相比为3∶1,萃取时间为8 min,5级萃取下的总萃取率为99.29%;反萃适宜的有机相与水相相比为10∶1,反萃剂硫酸溶液的体积浓度为8%,8级反萃下的总萃取率为99.70%。  相似文献   

5.
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。   相似文献   

6.
以废石化催化剂碱性浸出液为研究对象, 进行了N263三级逆流萃取+超声波一级NH4Cl反萃+三级NaOH、NaCl逆流反萃工艺研究。结果表明, 优化萃取条件为: 初始pH值8.5、萃取体系30%N263+5%仲辛醇+65%磺化煤油、萃取时间3 min、相比O/A=1∶1; 一段反萃优化条件为: NH4Cl浓度2.0 mol/L、反萃相比O/A=5∶2、超声波功率500 W、反萃时间2 min; 二段反萃优化条件为: NaOH浓度1.0 mol/L、NaCl浓度0.5 mol/L、反萃相比O/A=3∶2、反萃时间3 min。以上优化条件下对浸出液进行钒的提取, 钒萃取率和反萃率分别为99.15%和99.36%, 对一段和二段反萃液进行钒产品回收, 可分别获得高纯V2O5产品(>99.9%)和普通V2O5产品(>99%)。  相似文献   

7.
糠基乙基硫醚萃取Pd(Ⅱ)性能的研究   总被引:1,自引:0,他引:1  
研究了糠基乙基硫醚从酸性介质中萃取Pd(Ⅱ)的性能。实验结果表明, 随着糠基乙基硫醚浓度的增大, 待萃液中H+浓度升高, Pd(Ⅱ)的萃取率逐渐升高。糠基乙基硫醚的浓度为8%, 相比O/A=1时, 待萃液的c(H+)=1.0 mol/L, 萃取1 min, 反应已达到平衡, Pd(Ⅱ)的萃取率大于92.2%。实验测定了糠基乙基硫醚对Pd(Ⅱ)萃取饱和容量, 在实验条件下高于9 g/L。用氨水反萃Pd(Ⅱ)时, 氨水的浓度在10 mol/L时, 对Pd(Ⅱ)的反萃性能最高。载Pd(Ⅱ)有机相中ρ(Pd(Ⅱ))=0.965 g/L, 氨水的浓度为10 mol/L, 相比A/O=3∶1, 反萃时间t=30 min, Pd(Ⅱ)的反萃率达到99.8%。  相似文献   

8.
刘荣丽  易师  邹龙 《矿冶工程》2015,35(6):117-119
为了有效回收氯氧化锆母液中的钪, 采用45%N235+5%仲辛醇+50%煤油组成的有机相对氯氧化锆母液进行预处理, 实现了母液中的Fe、U与Sc的有效分离。使用30%P204+70%煤油组成的有机相萃取富集母液中的钪, 用4.5 mol/L H2SO4+1 mol/L H2O2+0.4 mol/L HF混合液洗杂, 然后用2.5 mol/L氢氧化钠溶液反萃Sc, 钪反萃物经酸溶、草酸沉淀、灼烧得到Sc2O3产品。本工艺简单合理, 成本低, 钪单级萃取率达99%, 洗涤中钪损耗率为1.19%, 钪反萃率达97.5%,Sc2O3产品纯度为98%, 是一种从氯氧化锆母液中回收钪的有效方法。  相似文献   

9.
硫酸型季铵盐从石煤苏打浸出液中萃取钒的研究   总被引:1,自引:0,他引:1  
采用自制硫酸型季铵盐作萃取剂,直接从石煤苏打浸出液中萃取钒,主要考察了有机相组成、浸出液p H值、相比O/A、萃取温度、振荡混合时间对钒萃取率的影响,并考察了不同反萃剂对钒反萃的影响。实验结果表明,当有机相组成为8%硫酸型季铵盐+5%仲辛醇+87%磺化煤油,料液p H=9.5,相比O/A=1/1,萃取温度为25℃,振荡混合时间为3 min时,钒单级萃取率可达98%以上;用0.5 mol/L Na OH+1.5 mol/L Na2CO3作反萃剂,钒反萃率为94.14%,用6 mol/L NH3·H2O+3 mol/L(NH4)2SO4作反萃剂,钒反萃率为57.58%。  相似文献   

10.
利用离心萃取器研究硫酸体系中P507和P204协同萃取分离镍钴的效果。结果表明,P507和P204组成的协同萃取体系对镍钴的分离存在正协同效应,在有机相组成VP507∶VP204为3∶2,VO∶VA为1∶1,水相酸度为0.2 mol/L,流通量为10 L/h,转速为2 300 r/min,常温条件下,钴的二级逆流萃取率为95.8%,βCo/Ni为5 680。负载有机相用2 mol/L的H2SO4溶液2级逆流反萃,Co2+的反萃取率为93.5%,反萃液中的钴离子浓度为12.6 g/L。  相似文献   

11.
采用新型协同萃取剂P204/4PC从含少量镍钴钙的硫酸镁溶液中选择性萃取镍和钴,考察了萃取剂浓度、平衡pH值等因素对萃取分离效果的影响,绘制了萃取、反萃取等温线,并进行了串级模拟萃取?反萃取全流程实验.研究结果表明:P204/4PC协同萃取剂能从硫酸镁溶液中选择性萃取镍钴,实现镍钴与钙镁的高效分离以及镍钴的高倍富集回收...  相似文献   

12.
为了确定纳米气泡气浮快速修复重金属污染土壤的选别工艺,采用自制纳米气泡气浮装置为试验仪器,模拟含Cu2+、Zn2+、Pb2+、Cd2+、Ni2+和Cr3+等重金属离子溶液泄漏导致土壤重金属污染事件,考察了磨矿细度、pH值等参数对重金属脱除效率的影响。结果表明,当硫酸铵用量为30 kg/t、硫化钠用量为36 kg/t、丁基黄药用量为2 500 g/t、2#油用量为1 500 g/t、溶液pH值为8.0和浮选时间为60 min时,经过“1粗3扫”后,污染土壤中Cu2+、Cd2+、Ni2+、Pb2+、Zn2+和Cr3+的脱除率分别为90.08%、87.92%、85.95%、84.77%、78.85%和75.58%;获得泡沫产品中Cu2+、Zn2+、Pb2+、Cd2+、Ni2+和Cr3+含量分别为12.01×104 mg/kg、11.72×104 mg/kg、11.46×104 mg/kg、11.30×104 mg/kg、10.51×104 mg/kg、10.08×104 mg/kg,达到了硫化矿精矿质量要求,具有综合回收价值。研究获得的工艺流程对重金属污染土壤的应急修复具有指导意义。  相似文献   

13.
以壳聚糖(CS)为原材料、戊二醛为交联剂,制备了吸附材料壳聚糖/石墨烯(CS/GO)、壳聚糖/纳米二氧化硅(CS/SiO2)复合微粒。研究了吸附剂CS/GO、CS/SiO2、交联CS对Cu2+、Pb2+、Ni2+的吸附去除性能。结果表明,3种材料对重金属离子的最大吸附容量顺序为: CS/GO>CS/SiO2>交联CS; 3种吸附剂材料中CS/GO网络结构最发达,孔隙最多,比表面积最大,吸附性能最好。在模拟废水实验中,当pH=7、吸附剂用量6 g/L、时间30 min条件下,复合颗粒CS/SiO2对Cu2+、Pb2+、Ni2+的吸附率分别达到99.48%、98.50%和98.49%; CS/GO对Cu2+、Pb2+、Ni2+的吸附率分别达到99.20%、96.76%和99.40%。  相似文献   

14.
新型硅胶-聚合胺树脂在模拟氯化镍电解液中深度除铜   总被引:2,自引:0,他引:2  
研究了新型硅胶-聚合胺复合材料树脂SP-C在模拟氯化镍电解液中深度净化除铜工艺。在Ni2+ 70 g/L、Cu2+ 0.5~2.0 g/L、pH 1~4、温度20~60 ℃的氯化镍电解液中, 考察了该树脂对铜的吸附性能, 结果表明: 随料液pH值增大以及温度升高, 铜的交换容量增大; 料液Cu2+浓度对交换容量影响较小; 最佳吸附条件为: 料液pH=4、接触时间30 min, 温度60 ℃。对比研究了盐酸、硫酸两种解析液, 硫酸显示出更好的解析效果, 最佳解析条件为: H2SO4 2 mol/L、解析接触时间40 min。最佳工艺条件下每毫升湿树脂铜的工作交换容量及饱和交换容量分别0.453 mmol和0.540 mmol, 铜的解析峰值液浓度为28 g/L。  相似文献   

15.
陈熙  徐新阳  赵冰  邢家良 《金属矿山》2015,44(7):147-151
为检验恒电流喷射床微粒电沉积法高效、低成本处理含镍废水的可行性,以实验室模拟酸性含镍废水为研究对象,进行了工艺条件优化研究。结果表明:①Ni2+去除率和电流效率随pH值的增大先升后降;电流值增大Ni2+去除率上升、电流效率下降;沉积液温度升高,Ni2+去除率和电流效率下降;微粒粒径越小,Ni2+去除率和电流效率越高;氮气的鼓入可提高电流效率和Ni2+去除率。②DO值随pH值和电流强度增大而增大,随温度升高而降低,氮气的鼓入可有效降低DO值。③氮气的鼓入主要通过降低沉积液的DO值来抑制沉积金属镍的返溶,也削弱了因浓差极化导致的Ni2+去除率和电流效率下降的问题。④Ni2+浓度为1 g/L的废水,在pH=4.5,微粒粒径为1.8 mm,电流强度为15 A,沉积液的温度为25 ℃,有氮气鼓入的情况下,电沉积180 min的Ni2+去除率为74.77%,平均电流效率为67.67%,比不鼓入氮气分别高28个百分点和16.66个百分点。由于电沉积可以直接得到金属镍单质,因此,从实践上讲,该方法具有显著的经济和环境效益,亦可作为离子交换或膜分离法前的预处理方法。  相似文献   

16.
硫代硫酸盐从废弃印刷线路板中浸金实验研究   总被引:1,自引:0,他引:1  
硫代硫酸盐浸金的主要影响因素有: 浸取温度、反应时间、硫代硫酸盐浓度、二价铜离子浓度、氨浓度。合适的浸金条件是: 固液比为1∶5, 浸取温度60 ℃, 反应时间2 h, 硫代硫酸盐浓度0.4 mol/L, 二价铜离子浓度0.04 mol/L, 氨浓度0.45 mol/L, pH=9.5, 添加0.2%的SO32-, 空气进气速率1 L/min。研究表明, 硫代硫酸盐能够非常有效地从废弃印刷线路板中浸取金。  相似文献   

17.
TBP-MIBK协同萃取高硫高砷金精矿浸出液中的铁   总被引:2,自引:2,他引:0  
周勇  李登新 《矿冶工程》2009,29(1):74-77
利用TBP-MIBK混合体系从金精矿硝酸浸出液的盐酸介质中协同萃取铁, 并研究其萃取机理。通过考察初始料液浓度、盐酸浓度、相比(Vorg/Vaq)及混合体系对铁的萃取率和分配系数的影响, 得出萃合物的组成为HFeCl4·3TBP-MIBK。实验结果还表明: 在初始料液浓度18.09 g/L, 盐酸浓度6.14 mol/L, 有机相组成TBP∶MIBK为7∶3, 相比1∶1条件下, 铁的萃取率达到99.32%, 萃余液中含铁低于0.1 g/L。以蒸馏水反萃, 含铁17.97 g/L的有机相在相比为1∶2时, 铁基本上被反萃完全。通过萃取和反萃, 铁离子溶液中杂质含量大大降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号