首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

2.
某铁矿为含铜混合矿石,铁矿物以磁铁矿、赤褐铁矿和菱铁矿的形式存在,铜矿物主要有黄铜矿、少量斑铜矿,含有少量黄铁矿,伴生有金钴等贵重元素。分选过程中除回收铁矿物外,要求同时得到铜精矿和硫精矿。根据矿石性质,通过浮选条件试验和流程试验,采用混合浮选-分离浮选-弱磁选-强磁选原则流程,一段磨矿(磨矿细度为75%-0.076mm),可以获得含铜16%以上的铜精矿、含硫36%以上的硫精矿、含铁62%以上的弱磁铁精矿,强磁铁精矿铁含量仅32%~36%;采用铜硫粗精再磨(磨矿细度为90%-0.076mm)再选流程,试验指标进一步提高,铜回收率提高4.44%、硫精矿品位提高1.10%、硫回收率提高1.78%,强磁铁精矿铁含量提高3.84%。由于试样磁黄铁矿含量较高,致使弱磁铁精矿含硫偏高,采用弱磁选精选无法进一步降低,建议对弱磁铁精矿进行反浮选脱硫提铁处理。  相似文献   

3.
王浩明  张成龙 《现代矿业》2020,36(7):162-164
内蒙古某铁矿石铁品位为34.47%,主要铁矿物为菱铁矿和磁铁矿,赤褐铁矿少量。为了确定该矿石中磁铁矿的高效回收工艺进行了试验研究。结果表明:矿石采用磨矿—弱磁粗选—再磨—2次弱磁精选—1粗1精3扫反浮选流程处理,在一段磨矿细度为-0.076 mm 50%,二段磨矿细度为-0.043 mm 90%的情况下,获得了铁品位为65.41%、回收率为32.61%的磁铁矿精矿  相似文献   

4.
齐大山铁矿矿石铁品位为31.56%,其中FeO含量为6.59%,主要铁矿物为赤铁矿和磁铁矿,原采用阶段磨矿-粗细分级-重选-磁选-阴离子反浮选工艺,对微细粒铁矿物回收效果差。为改善细粒铁矿物的回收效果,提高选厂经济效益,对齐大山铁矿石开展了选矿工艺优化研究。结果表明:当一段磨矿细度为-0.074 mm占65%,二段磨矿细度为-0.074 mm占90%时,采用阶段磨矿-粗细分级-阶段重选-磁选-阴离子反浮选流程处理矿石,可以获得铁品位和回收率分别为66.80%和82.90%的综合精矿,其中重选精矿占比高达70.21%,弱磁选精矿占比为7.57%。一段螺旋溜槽粗选尾矿直接给入磁选-反浮选,能有效避免微细粒级铁矿物的损失;降低旋流器分级作业沉砂粒度,增加重选作业处理量;增加弱磁精选作业,直接产出最终精矿等措施,对降低浮选作业药剂用量和最终选矿成本具有重要意义。试验成果对实现鞍山式铁矿石的高效分选具有指导意义。  相似文献   

5.
孙炳泉  高春庆 《金属矿山》2015,44(11):57-61
国外某铁矿石铁品位为31.92%、SiO2含量为46.44%,矿石矿物嵌布粒度微细。为探索在较粗磨矿细度条件下获得高质量铁精矿的高效选矿工艺,对其进行了选矿流程试验。实验室试验结果表明:采用阶段磨矿-弱磁选-磁选柱分选工艺,当磨矿细度达到-0.043 mm占95%时,才能获得铁品位大于68%、硅含量小于5%的高质量铁精矿;而采用阶段磨矿-弱磁选-反浮选工艺,当磨矿细度放粗至-0.076 mm占90%时,即可获得铁品位大于68%、硅含量小于5%的铁精矿,且可减少三段磨矿量45%以上。扩大连续试验结果表明,原矿经两段阶段磨矿 (-0.076 mm占90%)-弱磁选-反浮选-反浮选尾矿脱水后再磨(-0.038 mm占95%)再选流程选别,可获得精矿铁品位68.12%、SiO2含量4.59%、铁回收率70.02%、磁性铁回收率96.83%的指标,实现了该矿石的高效分选。  相似文献   

6.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

7.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074 mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧—弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

8.
鞍山地区许东沟和哑巴岭采区的铁矿石铁品位为29.50%,铁矿物主要为磁铁矿,主要脉石为石英。为高效开发利用该矿石,在采用X荧光分析、化学成分分析、铁物相检测和扫描电子显微镜分析矿石性质基础上,进行了湿式粗粒中磁预选—阶段磨矿、阶段弱磁选—淘洗机精选条件试验和扩大连选试验。结果表明:(1)-2.5 mm高压辊磨产品经过筒式磁选机中磁预选,粗精矿铁品位为40.20%、铁回收率为89.76%;(2)预选粗精矿经过两阶段磨矿(一、二段磨矿细度分别为-0.074 mm占75%和-0.045 mm占90%)、三阶段弱磁选和一段淘洗机精选,最终获得产率35.73%、铁品位67.08%、铁回收率81.24%的铁精矿,尾矿铁品位为8.61%,研究结果可作为该矿石开发利用依据。  相似文献   

9.
分析了我国西部某铁矿采出的近矿围岩的性质,并进行了选矿试验研究,确定了其合适的开发利用工艺。结果表明,在最终磨矿细度为-0.043 mm占80%的情况下,采用阶段磨矿、阶段磁选、反浮选流程处理试样干抛精矿,获得了铁品位为62.11%、回收率为61.68%、磷含量为0.05%的铁精矿。因此,试验确定的选矿工艺是处理该试样的理想开发利用工艺。  相似文献   

10.
某低品位铁矿石的矿物学特性与选矿试验研究   总被引:1,自引:0,他引:1  
较系统地研究了某低品位铁矿石的矿石性质和选矿工艺。研究结果表明,该矿石为低品位磁铁矿矿石,原矿中TFe含量为27.65%,磁性铁占有率为87.96%;采用阶段磨矿、磁选流程,控制一段磨矿细度-74μm占57.82%,粗精矿再磨细度-74μm占75.92%,最终精矿TFe品位可以达到67.07%,回收率达到86.05%;采用一段磨矿、磁选—反浮选流程,控制磨矿细度-74μm占67.56%,精矿品位可以达到66.21%,回收率达到79.97%。  相似文献   

11.
张玲  王素玲 《矿冶工程》2017,37(4):48-50
对铁品位34%左右的某铜铁矿山选铜尾矿进行了单一强磁选、强磁选-重选、强磁选-磨矿-反浮选、强磁选-磨矿-强磁选-反浮选、磨矿-强磁选-反浮选的多方案试验研究, 经对比分析, 最终确定采用磨矿-强磁选-反浮选工艺, 可获得精矿铁品位63.17%、回收率70.30%的良好指标。  相似文献   

12.
甘肃某低品位钛铁矿石铁和TiO_2品位分别为22.08%、18.34%,铁主要赋存于钛铁矿、钛磁铁矿和赤(褐)铁矿中。为回收矿石中的铁和钛,进行选矿试验。结果表明,在磨矿细度-0.074 mm占85%的条件下,1粗1精弱磁选—中磁选—强磁扫选—磁选精矿1粗1精反浮选试验可获得铁品位42.82%、回收率82.34%,TiO_2品位29.94%、回收率67.93%的精矿,Si O2含量仅8.97%,指标较好,精矿可作为高炉护炉原料。试验结果可为该钛铁矿石选矿工艺流程的确定提供技术参考。  相似文献   

13.
对某矿山代表性矿样进行了矿石性质及选矿工艺试验研究,进行了单一磁选、焙烧-磁选、磁选-反浮选、焙烧-磁选-反浮选等方案对比。结果表明,焙烧-磁选-反浮选能获得合格铁精矿,在最终磨矿细度-0.037 mm粒级占75%时,对品位32.50%的原矿经过三段磁选、三段浮选,可获得精矿铁品位59.94%、铁回收率72.84%、尾矿品位16.13%的选别指标,精矿中主要杂质SiO2含量8.47%。  相似文献   

14.
云南某含钛磁铁矿是昆钢合资开发的一种贫铁矿资源,为综合回收利用其中的铁和钛进行了一系列试验研究。通过分析试验结果,确定采用阶段磨矿阶段弱磁选铁—强磁—摇床选钛的选矿工艺流程,试验在1段磨矿细度为-0.045 mm 55%、2段磨矿细度为-0.045 mm 80%的条件下弱磁选铁、摇床选钛,可获得铁品位为56.16%、铁回收率为52.67%的铁精矿,钛品位为40.31%、钛回收率为3.24%的钛精矿。  相似文献   

15.
某混合铁矿石全铁品位32.07%,SiO2含量50.63%,铁矿物嵌布粒度粗细不均,为合理开发利用该矿石,按磨矿—粗细分级—重选—磁选—阴离子反浮选的原则流程对该矿石进行选矿试验。试验结果表明,在最佳试验参数下,原矿经一段磨矿(-0.076 mm 65%)—1粗2精螺旋溜槽重选—磁选—二段磨矿(-0.076 mm91.5%)—磁选—阴离子反浮选流程处理,可获得铁精矿全铁品位65.12%、回收率74.46%的选别指标,可为该高硅铁矿石选矿工艺的确定提供技术参考。  相似文献   

16.
某鲕状铁矿石以磁赤铁矿为主,铁矿物与脉石矿物嵌布关系极复杂,且含一定量易泥化的赤铁矿和含铁黏土,常规磁选工艺难以显著提高精矿铁品位。采用还原焙烧-阶段磨矿阶段弱磁选-反浮选工艺对该矿石进行了开发利用研究。结果表明,矿石经还原焙烧-两段阶段磨矿阶段弱磁选-1粗1精2扫、中矿顺序返回反浮选流程处理,最终获得了铁品位为61.30%、铁回收率为80.43%的铁精矿。  相似文献   

17.
刘军  杨任新  王炬  陆虎 《金属矿山》2018,47(10):70-75
姑山赤铁矿石硬度大、嵌布粒度极微细,目前的选矿工艺指标低(块精矿铁品位48%、粉精矿铁品位57%)。为探索提高姑山极微细粒赤铁矿石选矿工艺指标的途径,在实验室进行了阶段磨矿-阶段强磁选-阴离子反浮选探索试验。结果表明:在一段磨矿细度为-0.074 mm占85%条件下,经一阶段强磁选(1粗1扫,粗选、扫选磁场强度分别为477 kA/m、637 kA/m),强磁选精矿再磨至-0.030 mm占87%,经二阶段强磁选(1粗1扫,粗选、扫选磁场强度分别为477 kA/m、716 kA/m)-1粗1精阴离子反浮选(以NaOH为pH调整剂、淀粉为抑制剂、石灰为活化剂、RA-915为捕收剂),获得的浮选精矿铁品位可达63.96%,说明采用阶段磨矿-阶段强磁选-阴离子反浮选工艺将姑山铁矿铁精矿品位提高至63%以上在技术上是可行的。试验结果可以为姑山极微细粒赤铁矿石合理选矿工艺流程的确定提供参考。  相似文献   

18.
针对国外某铁矿石晶体嵌布粒度极细及难磨易选的性质特点,对该矿石进行了阶段磨矿—弱磁选—反浮选得精—中矿再磨—弱磁选工艺流程试验。试验结果表明:当2段磨矿细度为-0.076 mm 90%时,弱磁精选精矿采用反浮选可提前获得铁品位为68.50%左右的铁精矿,反浮选尾矿经再磨—弱磁选后还可获得铁品位为67%以上的铁精矿,获得的最终综合精矿铁品位为68.09%、铁回收率为70.32%。  相似文献   

19.
袁帅  李艳军  刘杰  刘双安 《金属矿山》2015,44(11):62-65
采用磨矿-弱磁选-中强磁选-中强磁选精矿再磨后反浮选工艺流程对辽宁某深埋铁矿石进行了选矿工艺研究。结果表明,对铁品位为29.22%、赤褐铁占总铁67.76%、脉石矿物以石英为主的试样,在磨矿细度为-0.043 mm占75%的情况下,经1次弱磁选(磁场强度为95.50 kA/m)。1次中强磁选,中强磁选精矿再磨至-0.038 mm占90%后经1粗1精3扫、中矿顺序返回反浮选,弱磁选精矿与反浮选精矿合并为最终精矿,其铁品位为67.26%、铁回收率为84.68%。试验指标理想,工艺流程简单,可作为该铁矿石资源开发利用的依据。  相似文献   

20.
甘肃某铁矿以磁铁矿石为主,在最终磨矿细度-0.038 mm为98.9%时,经三段磨矿五段弱磁选、反浮选可将铁品位提高至61.02%,SiO2含量11.25%,但铁回收率低,选矿成本高。采用弱磁—反浮选回收磁铁矿、弱磁尾矿强磁抛尾—直接还原—弱磁选的联合流程,铁精矿品位可达66.68%,回收率为69.92%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号