首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterogeneity of the phase composition, the texture, and the mechanical properties in various zones and directions of plates (thickness T = 80 mm) in a V1461 (Al–Cu–Li) alloy has been studied. It is noted that the strength characteristics are maximal in the median cross section (ultimate strength and yield strength are 570 and 540 MPa, respectively); in the cross section at 0.25T, these values are 530 and 490 MPa, respectively; in the height direction, they are only 490 and 440 MPa. The studies of texture show that an intense one-component texture, which is similar to the matrix and δ' phases, is observed in a medium plate layer of thickness (0.3–0.35)T; the {011} texture plane is parallel to the plate plane with the dominant “brass” {110}〈112〉 texture. Hardness is shown to increase from HRB70 after aging at 120°C for 20 h to HRB85 after three-step aging at 120°C, 20 h + 140°C, 24 h + 150°C, 24 h. It is shown that aging at 120 and 140°C is accompanied by the precipitation of the Θ' phase along with the δ' phase, and aging at 150°C also leads to the precipitation of the T1 phase.  相似文献   

2.
The objects of investigation are ZK51A (ML12) alloy samples containing from 3.5 to 5.5 wt % Zn and 0.5–0.8 wt % Zr. The influence of Zn and Zr content on phase transition temperatures and the phase composition in equilibrium conditions and when using the Scheil–Gulliver solidification model is established using the calculation of phase diagrams in the Thermo-Calc program. It is shown that a significant increase in the liquidus temperature of the alloy occurs at a zirconium content in the alloy higher than 0.8–0.9 wt %, and an increase in the melting temperature above 800°C is required, which is undesirable when using steel crucibles. The equilibrium content of alloying components in the magnesium-based solid solution at various temperatures is calculated. The microstructure of as cast and heat-treated alloys with various concentrations of alloying components is investigated using scanning electron microscopy. The distribution of Zn and Zr in a dendritic cell of the as cast and heat-treated alloy is investigated. Zinc is concentrated along the dendritic cell boundaries in the as cast state, but its concentration in their center becomes higher than along the boundaries after heat treatment (HT). Zirconium is concentrated in the center of dendritic cells. It is shown that the two-stage solutionizing mode gives the largest increment of this characteristic: 330°C, 5 h + 400°C, 5 h. The influence of the aging temperature (150 and 200°C) on the sample hardness is investigated. It is revealed that it is higher in the case of aging at 200°C, and its maximum is observed under holding for 8?10 h. The HT of the alloy, including solution treatment (330°C, 5h + 400°C, 5 h) with subsequent quenching and aging (200°C, 8 h), made it possible to attain an alloy ultimate strength of 285 ± 13.5 MPa and a elongation of 11.4 ± 1%.  相似文献   

3.
The possibility of producing nonequilibrium amorphous and crystalline phases in the Cu-W system is of interest because, under equilibrium conditions, no mutual solubility is expected between Cu and W. Triode sputtered coatings (45 to 150 μm thick, produced at deposition rates between 20 and 150 Å/s) consisted of amorphous and metastable crystalline phases. The latter remained decomposition-resistant on heating to various temperatures between 340 °C and 600 °C (the maximum temperature of exposure). The amorphous phase in such coatings crystallized on heating into a metastable body-centered cubic (bcc) phase, and the crystallization temperatureT x was found to decrease across the phase diagram from 450 °C to 340 °C as the percentage of W increased from 26 to 60 at. pct. Samples containing amorphous phase regions, when subjected to heating between 150 °C and 250 °C, showed an unusual rapid precipitation of Cu at the sample surface, indicating an easy diffusion of the Cu component. This occurred without crystallization of the remaining slightly tungsten-enriched amorphous matrix. Microhardness measurements in sputtered two-phase amorphous and bcc regions have shown that in alloys of the same composition, the amorphous phase was always softer than the bcc solid solution phase. X-ray, microprobe, and optical evidence suggests that the amorphous films deposited at very low temperatures(i.e., at liquid N2) may subsequently undergo a phase separation upon heating to room temperature and prior to crystallization. Earlier work and present studies of vapordeposited alloys in this system confirm that the observed phases and microstructures can be related to free energy trends estimated from thermodynamic considerations and to specific deposition parameters, such as the substrate temperature and the deposition rates, which influence the kinetics.  相似文献   

4.
Samples of ML19 magnesium alloy with composition, wt %, (0.1–0.6)Zn–(0.4–1.0)Zr–(1.6–2.3)Nd–(1.4–2.2)Y have been investigated. The influence of Nd, Y, Zn, and Zr on equilibrium phase-transition temperatures and phase composition using Thermo-Calc software is established. The Scheil–Gulliver solidification model is also used. We show the significant liquidus temperature increase if the zirconium content in alloy is higher than (0.8–0.9) wt %. Thus, a higher melting temperature is required (more than 800°C). This is undesirable when melting in a steel crucible. The change in equilibrium fractions of phases at different temperatures in ML19 magnesium alloy with a minimum and maximum amount of alloying elements are calculated. Microstructures of alloys with different amounts of alloying elements in as-cast and heat-treated condition has been studied using scanning electron microscopy (SEM). We investigate the concentration profile of Nd, Y, Zn, and Zr in the dendritic cell of an as-cast alloy. The amount of neodymium and zinc on dendritic cell boundaries increased. A high concentration of yttrium is observed both in the center and on the boundaries of the dendritic cell. A high zirconium concentration is mainly observed in the center of the dendritic cells. A small amount of yttrium is also present in zirconium particles. These particles act as nucleation sites for the magnesium solid solution (Mg) during solidification. The effect of aging temperature (200 and 250°C) on the hardness of the samples after quenching was studied. Aging at 200°C provides a higher hardness. The change in the hardness of quenched samples during aging at 200°C is investigated. Maximum hardness is observed in samples aged for 16–20 h. The two-stage solution heat treatment for 2 h at 400°C and 8 h at 500°C with water quenching and aging at 200°C for 16 h is performed. This heat treatment enables us to get tensile strength 306 ± 8 MPa and yield strength 161 ± 1 MPa with elongation 8.7 ± 1.6%.  相似文献   

5.
To address the issue of liquid metal embrittlement (LME) susceptibility in galvanized 22MnB5 steel during the hot stamping process, the material's performance is affected. This study proposes a method combining precooling and tube hydroforging to produce galvanized tubular hot stamping parts. The primary workflow comprises four distinct stages: the heating phase, thermal retention phase, precooling phase, and the tube hydroforging phase. Notably, the precooling stage employs two distinct approaches: air precooling and boiling water precooling. The composition and morphology of the zinc coating and the microstructure and mechanical properties of the 22MnB5 steel are investigated using two precooling methods at different hydroforging temperatures. The results show that when the initial hydroforging temperature is below 800 °C, the precooling combined with the tube hydroforging process eliminates LME. With increasing precooling time, the oxidation reaction forms ZnO and Fe2O3 on the coating. By comparing the composition, morphology, and mechanical properties of the coatings at hydroforging temperatures of 800 °C and 500 °C, it is concluded that the boiling water precooling aligns more effectively with the requirements of industrial production, with the optimal forming temperature being within the range of 750–800 °C.  相似文献   

6.
The kinetics of carbide precipitation in a fully processed 2.3 wt Pct silicon, 0.66 wt Pct aluminum electrical steel with carbon contents of 0.005 to 0.016 wt Pct were investigated over the temperature range from 150 to 760 °C and times from 30 seconds to 240 hours. The size, morphology, and distribution of the carbide phases, as functions of aging time and temperature, were determined by optical and transmission electron microscopy. The 1.5T core loss was also evaluated and correlated with the changes in precipitation. Distinct C curves were observed for the formation of grain-boundary cementite at temperatures above 350 °C and a transition carbide ({100} α habit plane) at temperatures below 350 °C. Grain-boundary cementite had a relatively small effect on core loss. The large increases in core loss that accompanied transition carbide precipitation peaked at specific aging temperatures depending on the carbon content of the steel. Once a transition carbide dispersion was initially established at a given aging temperature, particle coarsening and core loss changes were generally insensitive to aging time. The influence of a combined addition of silicon and aluminum on the solubility of cementite and the transition carbide in iron was estimated and discussed. This paper is based on a presentation made at the symposium “Physical Metallurgy of Electrical Steels” held at the 1985 annual AIME meeting in New York on February 24–28, 1985, under the auspices of the TMS Ferrous Metallurgy Committee.  相似文献   

7.
The low-temperature (<500 °C) decomposition of Fe-Ni martensite was studied by aging martensitic Fe-Ni alloys at temperatures between 300 °C and 450 °C and by measuring the composition of the matrix and precipitate phases using the analytical electron microscope (AEM). For aging treatments between 300 °C and 450 °C, lath martensite in 15 and 25 wt pct Ni alloys decomposed with γ [face-centered cubic (fcc)] precipitates forming intergranularly, and plate martensite in 30 wt pct Ni alloys decomposed with γ (fcc) precipitates forming intragranularly. The habit plane for the intragranular precipitates is {111}fcc parallel to one of the {110}bcc planes in the martensite. The compositions of the γ intergranular and intragranular precipitates lie between 48 and 58 wt pct Ni and generally increase in Ni content with decreasing aging temperature. Diffusion gradients are observed in the matrix α [body-centered cubic (bcc)] with decreasing Ni contents close to the martensite grain boundaries and matrix/precipitate boundaries. The Ni composition of the matrix α phase in decomposed martensite is significantly higher than the equilibrium value of 4 to 5 wt pct Ni, suggesting that precipitate growth in Fe-Ni martensite is partially interface reaction controlled at low temperatures (<500 °C). The results of the experimental studies modify the γ/α + γ phase boundary in the present low-temperature Fe-Ni phase diagram and establish the eutectoid reaction in the temperature range between 400 °C and 450 °C. Formerly Research Assistant, Department of Materials Science and Engineering, Lehigh University  相似文献   

8.
The strain-rate sensitivity of a Mg-10Dy-1Zn (wt pct) alloy containing different long-period stacking-ordered (LPSO) phases has been investigated in the strain rate range of 10?3 to 1 s?1 from room temperature to 673 K (400 °C). Both alloys containing 18R-LPSO and 14H-LPSO phases show negative strain-rate sensitivity (–0.02  to –0.01) at intermediate temperatures [423 K to 523 K (150 °C to 250 °C)]. The serration behavior of the Mg-10Dy-1Zn alloy containing 18R-LPSO phase is related to dynamic strain aging. However, the appearance of serrated flow in the Mg-10Dy-1Zn alloy containing 14H-LPSO phase is mostly rooted in the formation of microcracks in \( \left\{ {10\overline{1} 2} \right\} \) planes.  相似文献   

9.
The results of metallographic investigations, micromechanical tests, and X-ray structural analysis of the layered composite of the Al-Mg system are presented. It is found that in the initial state, intermetallic phases are absent in the contact region. Starting from t = 150°C, local regions of the diffusion layers are formed. An increase in the keeping time and temperature leads to growth (towards A1) in the thickness of layers and their hardness, namely, to 2000–3000 MPa on heating to 150°C for 1 h and 4500–5000 MPa at t = 400°C for τ = 12 h. When kept for 16 h at 400°C, the layer preferentially involves the Mg2Al3 phase with the hexagonal lattice.  相似文献   

10.
《Acta Metallurgica》1977,25(6):667-671
The decomposition of a supersaturated αTi (0.22 wt.% Fe) alloy was tracked by Mössbauer spectroscopy and X-ray diffraction during aging at 320°C. In the first stages of aging a metastable phase, designated θ, is formed from the αm phase and later partially transforms into the ω-phase. This phase appears after 30 min and disappears after about 12 hr of aging. Coherent stresses of the order of 25 kbar between the α and θ phases occur as a result of the difference in their Fe content. These stresses are shown to be responsible for the formation of the ω-phase.The ω-phase, although thermodynamically less stable than either the α or the θ-phase. is retained as long as the coherency stresses remain sufficiently high. The Fe contents of the θ- and ω-phases were determined.  相似文献   

11.
The evolution of the microstructure of a Co-27Cr-5Mo-0.05C alloy was investigated during isothermal aging between 650 °C and 950 °C. The main structural change observed as a result of aging was an fcc (metastable)→hcp isothermal martensitic transformation. The relationships between transformation, temperature, and time for this phase transition were determined using two different techniques: (1) room-temperature X-ray diffraction on samples aged after quenching from 1150 °C to 25 °C and (2) high-temperature in situ X-ray diffraction on samples cooled at 50 °C/min from 1150 °C to the aging temperature. The results show that the intermediate water quench significantly retards the kinetics of the phase transition by up to one order of magnitude in time. In addition, it was found that the grain size of the metastable fcc phase prior to aging does not affect the kinetics of the transformation. Age hardening resulting from this transformation varies linearly with the amount of hcp phase formed during the isothermal treatment and does not depend on the aging temperature. It is suggested that local plastic deformation, due to thermal and transformation stresses induced by quenching, reduces the number of hcp martensite embryos formed in the metastable fcc phase. This effect decreases the number of nucleation sites available for the fcc→hcp transformation during isothermal aging and leads to the slower transformation rates observed in water-quenched material.  相似文献   

12.
When uranium-niobium alloys containing between 13.9 and 17.9 at. pct Nb are quenched to room temperature from the BCC (γ) phase at elevated temperatures, diffusion-controlled precipitation of the equilibrium phases is prevented and martensitic transformations to transition phases occur instead. Dilatometry was used to detect transformation temperatures and with the help of X-ray diffraction analysis, a metastable phase diagram was established. At room temperature after quenching, alloys containing < 15.2 at. pct Nb were monoclinic (α″) and those with < 16.6 at. pct Nb were tetragonal (γ°). The deformation behavior and shape memory effects (SME) accompanying the reverse martensitic phase transformations in polycristalline specimens were surveyed and characterized phenomelogically. From uniaxial tensile tests at room temperature, macroscopic stress-strain parameters, associated with the reversible deformation modes in the α″ and γ° martensites, were defined and their composition and structural state dependencies delineated. A diffuse maximum manifested in the stress-strain diagrams was identified with the reversible strain limit, which varied inversely and continuously with composition. A concentration-independent value of 693 MPa was found for the plastic yield strength of the alloys. All the alloys exhibited heat-activated shape recovery but the degree depended on structural state and composition. The α″ alloys showed a much larger effect than γ° alloys. Shape recovery occurred in two stages in all alloys. The first stage of recovery accompanied martensite reversion but final reversion to the equilibrium y phase was not accomplished until much higher temperatures were reached. Rapid, low temperature aging reactions were thought to affect the finish of shape recovery and delay it to higher temperatures. Formerly with Metals and Ceramics Division, Oak Ridge National Laboratory  相似文献   

13.
A phase diagram is proposed for the V-VO system based on melting point determinations, differential thermal analyses, metallographic observations, and X-ray parametric measurements. A eutectic reaction occurs at 1640°C and 29 at. pct O. The intermediate phases V9O and V2O form peritectoidally at 510° and 1185°C, respectively, while V4O forms by a peritectic reaction at 1665°C. The VO phase melts congruently at 1790°C. The terminal solubility of oxygen in vanadium increases from 3.2 at. pct at room temperature to a maximum of 17.0 at. pct at the peritectic temperature. There is also extensive solid solubility associated with each of the intermediate phases. Two martensite-like phases form in alloys in the composition range 6 to 9 at. pct O upon quenching from above the 510°C peritectoid horizontal.  相似文献   

14.
Aged alloys of Al-0.5Si-0.5Ge (at. pct) contain diamond-cubic-A4 precipitates in a dispersion that is much finer than is found in alloys with Si or Ge alone. To help understand this aging behavior, the present work was undertaken to determine alloy composition as a function of aging temperature. The composition was estimated theoretically using a CALPHAD approach, and measured experimentally with energy-dispersive spectroscopy (EDS) in a high-resolution electron microscope. Theory and experiment are in reasonable agreement. As the aging temperature rises, the precipitates become enriched in Si, changing from 50 at. pct in the low-temperature limit to about 80 at. pct Si as the temperature approaches 433 °C, the high-temperature limit of the precipitate field.  相似文献   

15.
《Hydrometallurgy》2007,87(3-4):206-220
Pressure oxidation reaction kinetics and products are compared for the recovery of copper from a chalcopyrite concentrate under medium temperature conditions at 125–150 °C, as patented and promoted by various commercial operations, normally referred to as the Anglo/UBC, CESL and NSC (nitrogen species catalysed) processes. The main aim was to compare the effect of additives on the dispersion of molten sulfur and recovery of copper, and develop a better understanding of the role of chloride ion.Greater than 94% copper was extracted from the concentrate under all process conditions (except NSC) within 30 min. The extraction of the remaining copper in some instances took substantially longer due to poor dispersion of sulfur and agglomeration of the sulfide minerals. The partial oxidation of sulfide to elemental sulfur was about 70–80% at 150 °C and was greater in the presence of chloride ion and at higher initial acidity. Iron was leached and re-precipitated forming a number of different phases depending upon the acidity and salinity. These phases including hematite, jarosite and goethite were characterised using Quantitative X-ray Diffraction (QXRD) analysis. Hematite formation was favoured at higher temperatures (≥ 150 °C), low acidity and low to moderate salinity. Goethite formation was favoured at lower temperatures (< 150 °C) and by low acidity and low salinity. Jarosite was formed under conditions of moderate to high acidity and its formation was enhanced/stabilised in the presence of sodium ions. It was demonstrated that the basic copper salt, antlerite, could be produced under conditions of low acidity.Chloride ion addition and high acid concentrations enhanced copper extraction kinetics and recovery, and inhibited the oxidation of sulfur to sulfate. This suggests that chloride ion is adsorbed on the sulfur surface to restrict direct oxygen reaction. Chloride ion also enhances the anodic oxidation of mineral sulfides and the dispersion of molten sulfur.  相似文献   

16.
The effect of an isothermal aging treatment on the embrittlement of 00Cr25Ni7Mo4N super duplex stainless steel was studied by combining metallographic, SEM and TEM observation. The results showed that thermal aging treatment below 500°C and above 1050°C did not have any effect on the impact toughness. The observed embrittlement behaviour was mainly attributed to the generation of intermetallic phases in the steel matrix, which included the R phase formation below 600°C, the R phase and especially the σ phase formation at 700°C, and the formation of the σ phase in the range of 800‐1000°C. The impact toughness decreased to a minimum after a thermal aging for 30 minutes in the temperature range of 800°C to 900°C. A trend of decreasing impact ductility with increasing amount of precipitated σ phase was observed. The impact energy started to decrease as the amount of the σ phase reached about 10‐15 volume‐% and reached a minimum when the amount of the σ phase increased to about 30 volume‐%.  相似文献   

17.
The aging characteristics of aluminum alloy extrusions containing 0.60 to 0.90 wt pct Mg2Si were determined. At low Mg2Si levels, preaging treatments at room temperature and at elevated temperatures refined the G.P. zone dispersion and increased the alloy’s hardness after final aging. Preaging had little effect on hardness at the high end of the Mg2Si range. These results are explained on the basis of current aging theories which invoke the concept of a critical temperature, above which homogeneous nucleation does not take place. This temperature varies from ≃150°C at 0.6 pct Mg2Si to ≃220°C at 1.5 pct Mg2Si. The apparent activation energy for final aging was estimated to be 21 kcal/mole, a value which is intermediate between the activation energies for vacancy motion and solute (silicon and magnesium) diffusion in aluminum.  相似文献   

18.
研究了工作4.0×104 h后的GH132合金的组织变化,分析了GH132合金在高于650℃短时过时效条件下的组织稳定性.结果表明:合金组织基本稳定,变化不甚显著;不论是在低温长期时效,还是在短时超温过时效,σ相、Laves等脆性相均不会产生;经过过时效后合金所产生的组织变化仅仅是γ'相的补充析出、聚集长大,以及η相的析出.  相似文献   

19.
The effects of natural aging and steplike aging on the hardness and the electrical conductivity of the following high-strength casting aluminum alloys are studied and compared: experimental alloys ATs6N4, ATs7NZh, and ATs6N0.5Zh based on the Al-Zn-Mg-(Cu)-Ni-Fe system (nicalins) and a commercial AM5 alloy based on the Al-Cu system. It is found that, during 3-day natural aging, the hardness of the nicalins increases to HV 1.4–1.55 GPa, which is higher than their hardness in the as-quenched state by a factor of 1.6–1.7. The hardness of the AM5 alloy is almost unchanged during natural aging and is retained at the level of the as-quenched state (HB ~ 0.8 GPa). After quenching and natural aging for 1 day, the alloys are subjected to steplike aging in the temperature range 100–250°C at a step of 25°C on holding for 3 h at each temperature. Upon steplike aging, hardness HB of the nicalins reaches a maximum (~2.1 GPa for the ATs7NZh and ~1.9 GPa for the ATs6N4 and ATs6N0.5Zh alloys) at a temperature of 150°C. The hardness of the AM5 alloy reaches a maximum (HB ~ 1.3 GPa) at a temperature of 175°C.  相似文献   

20.
The properties of high-temperature nickel alloys for manufacturing depend on the thermal stability of the structure, the particle size, the shape, the quantity of strengthening γ' phase, and the strength of the γ solid solution. Such alloys are strengthened by the addition of rhenium and lanthanum. In the present work, the structure and phase composition of high-temperature nickel alloy with added rhenium (0.4 at %) and lanthanum (0.006 at %) are qualitatively and quantitatively investigated. The methods employed are transmission diffraction electron microscopy and scanning electron microscopy. The alloy structure is considered in three states: after directed crystallization (the initial state, sample 1); after directed crystallization, annealing at 1150°C for 1 h, and annealing at 1100°C for 480 h (sample 2); and after directed crystallization, annealing at 1150°C for 1 h, and annealing at 1100°C for 1430 h (sample 3). Primary and secondary phases are observed in the superalloy. The primary phases are γ' and γ. They form the structure of the alloy and are present in the form of γ' quasi-cuboids separated by γ layers. The secondary phases due to the presence of rhenium and lanthanum are β NiAl, AlRe, NiAl2Re, σ, χ, and Ni3La2. The secondary phases seriously disrupt the structure of the γ + γ' quasi-cuboids. The rhenium and lanthanum do not uniformly fill the whole alloy volume, but only appear in local sections. Therefore, in all three states of the alloy, only some volume of γ + γ' quasicuboids is disrupted. Analysis of the secondary phases’ morphology shows that the σ particles are thin needles, whereas the Ni3La2 particles have internal structure with characteristic contrast and are relatively thick. Interestingly, the σ phase and Ni3La2 are deposited at the same locations. The introduction of rhenium and lanthanum changes the phase composition of the alloy, suppressing the formation of γ phase. The particles of secondary phase are localized in individual sections of the alloy with specific periodicity. The secondary phases are refractory: the melting point is about 1600°C for β phase, 2600°C for σ phase; and 2800° for χ phase. Thanks to the formation of refractory secondary phases and their periodic distribution in the structure, the strength of the superalloy with added rhenium and lanthanum is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号