首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation has been made of the mechanism of the iron layer formation on brake friction materials sliding over a steel surface. The nature of the metallization of specimens of friction materials, as well as changes in the surfaces as a result of sliding, were studied by optical and scanning-electron microscopy, electron-probe microanalysis, X-ray diffraction, thermogravimetric analysis, gas chromatograph analysis, and microhardness measurements. Based on this work and on reviews of some of the most recent results concerning the wear of friction materials, a hypothesis of the metallization of friction linings (iron layer formation) is presented. A model of a tribological system for a frictional brake as well as a model of the subsurface layers of composite brake materials is described.  相似文献   

2.
Bronze-uncoated and nickel-coated graphite composites were fabricated by powder metallurgy route. The tribological behaviors of composites sliding against AISI52100 steel ball under dry sliding condition were studied using a ball-on-disk tribometer. The nickel-coated graphite composites showed much better tribological properties in comparison with bronze and uncoated graphite composite. The friction coefficient of nickel-coated graphite composites decreased with increasing nickel-coated graphite content. However, the specific wear rate increased with the increase in nickel-coated graphite. The composite containing 15?wt% nickel-coated graphite showed the best self-lubricating properties because the compacted and stable mechanical mixed layer was formed on the worn surfaces. The wear mechanism of bronze 663 is adhesive wear and abrasive wear. The uncoated nickel-coated graphite composite shows the adhesive wear and delamination characteristics. However, the wear mechanism of nickel-coated composites is mildly abrasive wear.  相似文献   

3.
Phenolic resin (PF) and molybdic acid–modified phenolic (Mo-PF) have been synthesized and developed and combined with polyfluo wax (PFW) to fabricate PF-PFW and Mo-PF-PFW composite coatings. The effects of applied load and sliding speed on the tribological properties of the phenolic composite coating were evaluated using a block-on-ring wear tester. Compared to the PF composite coating, the Mo-PF displayed a lower friction coefficient and a higher wear life under all tested conditions. Scanning electron microscope (SEM) investigation showed that the Mo-PF composite coating had a smooth worn surface after the friction test, and a continuous and uniform transfer film was formed on the surface of the counterpart ring. The improved tribological properties of Mo-PF composite coating resulted from its enhanced thermal properties.  相似文献   

4.
Self-lubricating polymer–steel laminated composites (SLC) consisting of matrix zones and filled zones were fabricated by a laminating–bonding process. The matrix zones were silicon steel sheets and the filled zones were polymer matrix filled with MoS2 and graphite, respectively. The control specimen was prepared by spraying a polymer composite coating on a GCr15 disc. The tribological properties of SLC were investigated using a ball-on-disc tribometer under different loads and frequencies. Compared to the control specimen, the friction coefficient and wear rate of SLC was reduced by 57% and threefold at 4 N and 6 Hz, respectively. In addition, the friction coefficient of SLC was low and stable under low reciprocating frequency, and it was high and fluctuating under high reciprocating frequency. In addition, the wear rate increased with increasing applied load and reciprocating frequency. Scanning electron microscopy (SEM) images show that the lubricating mechanism of SLC was that solid lubricants embedded in filled zones expanded and smeared a layer of transfer film on the sliding path to lubricate the surface. The thermal expansion of solid lubricants was simulated using ANSYS software with thermal-stress coupling. The simulation results showed the maximum temperature of the filled zones was 130°C, and the maximum normal displacement of solid lubricants was approximately 10 μm. This confirmed that the solid lubricants expanded effectively by the aid of frictional heat.  相似文献   

5.
The purpose of this study is to explore the effect of SiC reinforcement along with immiscible element addition in spray formed Al–Si base alloy. The investigation is done for four different compositions, i.e., Al–Si base alloy, Al–Si/SiC, Al–Si–5Sn/SiC and Al–Si–10Sn/SiC composite. The dry sliding wear properties of base alloy and composites were investigated against EN 31 steel at five different normal loads (14.7, 24.5, 34.3, 44.1 and 53.9 N). The tests were carried out in dry sliding conditions with a sliding speed of 1.6 ms−1 over pin-on-disc tribometer. Each composition is tested at four different temperatures 50, 75, 100 and 150 °C. To determine the wear mechanism, the worn surfaces of the samples were examined using scanning electron microscope (SEM). The composites emerge to be better wear resistant material than base alloy especially at higher loads. The optimum wear reduction was obtained in Al–Si–10Sn/SiC composite at all the different normal loads and temperatures.  相似文献   

6.
Most machine components are frequently exposed to tribological loadings during their service life. Hence, the tribological performance of materials is an essential element to be considered in the design of mechanical parts in addition to mechanical properties. Previously, authors have studied the mechanical properties of date palm leaf–reinforced polyvinyl alcohol composite. In the present investigation, an attempt has been made to investigate the tribological behavior of the composite under a multipass abrasion condition. The composite was prepared by reinforcing randomly oriented acrylic acid–modified date palm leaf fibers with varying weight percentages of 10, 20, 28, and 30%. The performances of the specific wear rate and wear weight loss were investigated as a function of applied loads and abrading distances. It was observed that 28 wt% is the optimum fiber loading to achieve maximum tribological properties similar to mechanical properties obtained from previous work. Scanning electron microscopy was used to understand the wear mechanisms of the composite at optimum fiber loading.  相似文献   

7.
The progress in aerospace field requires a new NiAl matrix composite that can stand against wear and decrease the energy dissipation through decreasing friction. In this study, the tribological behavior of NiAl–1.5 wt% graphene composite is investigated at room temperature under a constant load of 12 N and different sliding velocities. The results show that the friction coefficient and wear rate increase with increasing sliding velocity from 0.2 to 0.4 m/s due to the adhesion between the sliding bodies and tearing of the graphene layer. The friction coefficient and wear rate tend to decrease at a sliding velocity of 0.6 m/s as a result of severe plastic deformation and grain refinement of the worn surface. However, at 0.8 m/s the friction coefficient reaches a minimum value and the wear rate increases and changes the wear mechanism to fatigue wear. It can be concluded that various wear mechanisms lead to different tribological performance of NiAl–1.5 wt% graphene composite.  相似文献   

8.
In practice, the sliding speed is an important parameter for materials applied in sliding condition. We have conducted an experimental study to explore the effect of sliding speed on friction and wear performance of a copper–graphite composite. The sliding tests were carried out over a wide range of speeds with a pin-on-disc configuration. The results show that there is a critical speed at which there is a transition of the friction and wear regimes of the composite. In addition, the formation of a lubricant layer on the contact surface (surface modification) determines the actual tribological performance of the composite. The wear mechanisms in different wear regimes are also discussed.  相似文献   

9.
The paper presents the results of an investigation of the effect of the copper content on the tribological characteristics of Fe?C?Cu composites. It has been shown that the best tribological properties and hardness are shown by material containing 3% copper. In the case of a 10% copper concentration, the wear rate of the composite rises by as much as ten times, while at a 20% concentration, it decreases. It has been proved that the copper concentration significantly affects the formation of friction surface morphology.  相似文献   

10.
A laminar-structured tribolayer on the worn surface of Cu?CSiO2 composite in sliding against 1045 steel is observed by etching the longitudinal sections. In morphology, the tribolayer consists of many subunits with different lengths and heights. The subunits are curved or parallel to the contact surface at different depths from bulk to the worn surface. In microstructure, the tribolayer is unconsolidated after etching, and fine Cu grains, as well as few fractured SiO2 particles, are observed. The main formation mechanism of the laminar-structured tribolayer is grain boundary sliding. Shear localization with large plastic strain is a prerequisite for the formation of laminar structure. The generation and accumulation of frictional heating promote the plastic deformation and decrease the activation energy for grain boundary sliding. The etching effect is contributed to the presentation of the laminar structure.  相似文献   

11.
In this study, impacts of four types of monoglycerides and four types of triglycerides, which serve as additives, on properties of water-based drilling mud were explored using a ball-on-disk tribometer. It was found that the addition of glycerides increased the viscosity of drilling mud slightly. The results of tribological experiments indicate that carbon chain length, level of unsaturation, and polar groups of additives are three key factors which determine friction reduction and anti-wear behaviors of the drilling mud. The formation of a denser and thicker protective film on steel surface due to presence of glycerides additives is attributed to observed better friction reduction behaviors.  相似文献   

12.
13.
In this work, the effect of the damping component with/without individual grooved surface features on the friction-induced vibration and noise (FIVN) and surface wear performance is studied experimentally and numerically. The experimental results show that introducing a grooved damping component in the system has a significantly improved capability in suppressing the generation of FIVN. In addition, it is observed that the friction system with a grooved damping component suffers slighter wear. Numerical results show good agreement with the FIVN events observed in the experimental test. Through analysing the deformation behaviour of damping component and the contact behaviour of the friction system during friction process, it is speculated that the deformation behaviour of damping component plays a significant role in affecting the contact pressure and FIVN behaviour. In addition, linking the vibration performance and wear evolution, the connection between damping, and vibration and wear behaviour is discovered, which can further explain why the friction system with a grooved damping component shows improved capability in suppressing the FIVN of friction system.  相似文献   

14.
This article discusses the influence of the addition of vanadium nitride on the mechanical and operational properties of diamond composite material based on metallic bond comprised of iron, copper, nickel, and tin obtained by sintering in a mold at 800°C for 1 h with subsequent hot repressing. It has been established that the addition of vanadium nitride in the amount of 2 wt % to diamond–(51Fe–32Cu–9Ni–8Sn) increases the ultimate compressive strength from 846 to 1640 MPa and bending strength from 680 to 1120 MPa, as well as decreases the wear intensity of the composite material from 0.0069 to 0.0033 g/km. The mechanism of improving the tribological properties has been revealed.  相似文献   

15.
With the aim to investigate repeated braking of organic–metal brake pairs, tribological and scanning electron microscopy (SEM) experiments were performed to reveal the influence of a magnetic field on the tribological performance of brakes. A nonasbestos copper-based brake pad and gray cast iron brake disc were selected as the brake pair. The X-DM pad-on-disc friction tester was improved to set up a tribological tester under a magnetic field. The worn surfaces were observed by SEM to reveal the friction mechanisms. It was found that a magnetic field can ameliorate the dynamic friction and wear. In addition, the global mean friction coefficient increases and the wear resistance of brake materials improves. A magnetic field promotes surface oxidation and aggravates the surface heat emission condition. As a result, the mean temperature on the friction surface increases obviously. An appropriate magnetic field can improve the dynamic temperature rise and decrease the global temperature rise on the friction surface. It is considered that a magnetic field has important influences on tribological performance in repeated braking. Therefore, this research could provide theoretical references for studying the tribological performance in repeated braking and/or under a magnetic field.  相似文献   

16.
Abstract

In the present study, the wear behaviour of cross ply (0/90°) C–C composite with 60 vol.-% fibres has been studied with sliding distance, applied load and sliding velocities. The measurement of specimen temperature has been carried out to study the effect of frictional heating. Furthermore, wear debris and wear track observations are correlated to understand the wear mechanism. The bulk wear increases linearly with distance after an initial running-in period. The temperature studies reveal that frictional heating is more with increase in load or sliding velocity under dry conditions, however, presence of lubrication reduces frictional heating, because exposure of surface for direct contact is reduced, and hence wear rate in all studies with lubrication is less than that under dry condition. The wear track studies show graphite powder, peeling of fibres and dislodging of the surface. At low loads, smearing of graphite powder keeps the wear rate low, but as the load increases; dislodging, delamination of surface and breaking of fibres dominate, and wear rate sharply increases, however, sliding velocity initially enhances the graphite formation reducing the wear, but as the velocity reached an optimum value, there is extensive breakage of fibres, dislodging and delamination of surface, and the wear rate increases sharply.  相似文献   

17.
Recently, titanium aluminium tantalum nitride (Ti–Al–Ta–N) coatings have been shown to exhibit beneficial properties for cutting applications. However, the reason for the improved behaviour of these coatings in comparison to unalloyed Ti–Al–N is not yet clear. Here, we report on the tribological mechanisms present in the temperature range between 25 and 900 °C for this coating system, and in particular on the effect of the bias voltage during deposition on the tribological response. Based on these results, we provide an explanation for the improved performance of Ta-alloyed coatings. An industrial-scale cathodic arc evaporation facility was used to deposit the coatings from powder metallurgically produced Ti40Al60 and Ti38Al57Ta5 targets at bias voltages ranging from −40 to −160 V. X-ray diffraction experiments displayed a change with increasing bias voltage from a dual-phase structure containing cubic and hexagonal phases to a single-phase cubic structure. Investigations of the wear behaviour at various temperatures showed different controlling effects in the respective temperature ranges. The results of dry sliding tests at room temperature were independent of bias voltage and Ta-alloying, where the atmosphere, i.e. moisture and oxygen, were the most important parameters during the test. At 500 °C, bias and droplet-generated surface roughness were identified to determine the tribological behaviour. At 700 and 900 °C, wear depended on the coating’s resistance to oxidation, which was also influenced by the bias voltage. In conclusion, Ta-alloyed coatings show a significantly higher resistance to oxidation than unalloyed Ti–Al–N which could be an important reason for the improved performance in cutting operations.  相似文献   

18.
Composition coatings based on the epoxy–polyester matrix and polydisperse particles of structured carbon have been investigated. The formulation of the mixed compositions has been optimized. The effect of filler particles on structure formation of the surface and tribotechnical characteristics of composition coatings has been shown.  相似文献   

19.
Rare earth (RE) elements have positive effects on Al alloy, while most research is focused on microstructure and mechanical properties. As important application indices, toughness and plasticity are properties that are sensitive to alloy fracture characteristics, and few research studies have characterized the fracture properties of Al–Cu–Mn alloy on RE elements. The effect of different contents of Y on the fracture properties of Al–Cu–Mn alloy is investigated. T6 heat treatment (solid solution and artificial aging treatment), optical microscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) methods are applied to the alloy. Results showed that when Y element is present at 0.1%, the section of the as-cast alloy has smaller sized dimples and the fracture mode presents ductile features. Slight changes in hardness are also observed and maintained at about 60 HV. With increasing content of the RE element Y from 0.1 to 0.5%, the θ phase and Cu atoms in the matrix were reduced and most stopped at Grain boundaries (GBs). Micro-segregation and an enriched zone of Y near the GBs gradually increased. At the same time, the inter-metallic compound AlCuY is aggregated at grain junctions causing deterioration of the micro-structure and fracture properties of the alloy. After T6 treatment, the flatness of the fracture surface was lower than that of all the as-cast alloy showing lots of dimples and teared edges with a significant increase in hardness. When Y content was 0.1%, the strength and hardness of the alloy increased due to refinement of the grain strengthening effect. The content of Y elements segregated in the inter-dendritic zone and GBs is reduced. Plasticity and deformation compatibility also improved, making cracks difficult to form and merge with each other along adjacent grain junctions and providing an increased potential for ductile fracture. This paper proposes the addition of RE Y as an effective and prospective strategy to improve the fracture properties of the Al–Cu–Mn alloy and provide a meaningful reference in terms of improving overall performance.  相似文献   

20.
In this study, we investigated the microstructural, mechanical, and tribological properties of rice husk (RH)-based carbon carbonized at various carbonizing temperatures under dry conditions. All samples exhibited amorphous carbon structures and the X-ray diffraction spectra of the samples carbonized at 1300 and 1400?°C indicated the presence of a polymorphic crystals of silica. The hardness increased with temperature due to the densification of the structure and the presence of the hard crystalline silica. At low normal loads, the mean friction coefficient of the material decreased as the carbonizing temperature was increased from 600 to 800?°C and slightly decreased as the carbonizing temperature was further increased from 800 to 1400?°C. At the highest load, all samples, except for that carbonized at 600?°C, exhibited extremely low friction coefficients (around 0.05). The wear rates of the all samples were smaller than 10?5 mm3/N·m, indicating that RH carbon exhibits sufficient wear resistance. A Raman spectroscopic analysis of the worn surface of a steel ball revealed that the transfer layer at 600?°C had a less graphitic structure compared to the other carbonizing temperature. Based on these findings, we recommend an optimal carbonizing temperature for applications of sliding materials exposed to dry sliding contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号