首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Scuffing is a major problem that limits the life and reliability of sliding tribo-components. When scuffing occurs, friction force rises sharply and is accompanied by an increase in noise and vibration; severe wear and plastic deformation also occur on the damaged surface. Attempts have been made over the years to combat scuffing by enhancing the surface properties of the machine elements, and by methods involving lubricant formulation and coating application.

In this study, the authors evaluated the scuffing performance of an amorphous, near-frictionless carbon (NFC) coating that provides super-low friction under dry sliding conditions. The test configuration used a ball-on-flat contact in reciprocating sliding. The coating was deposited on HI3 steel. An uncoated 52100 steel ball was tested against various coated flats in room air. Compared to uncoated surfaces, the carbon coating increased the scuffing resistance of the sliding surfaces by two orders of magnitude. Microscopic analysis shows that scuffing occurred on coaled surfaces only if the coating had been completely removed. It appears that depending on coating type, the authors observed that coating failure occurs before scuffing failure by one of two distinct mechanisms: the coating failed in a brittle manner and by spoiling, or by gradual wear.  相似文献   

2.
The surfaces of a heavily loaded ball-joint were initially covered with a sliding spray and suffer wear. A solution is found by incorporating UHMWPE pads (Ultra high molecular weight polyethylene) with a carbon fibre/epoxy reinforced ring as sliding material into the chairs of the structure, while the steel ball-side is covered with a Zn-phosphate primer coating, protecting against corrosion. The local static and dynamic behaviour of the hybrid UHMWPE pads in contact with steel or Zn-coated counterfaces has been large-scale tested on loading capacity, low friction and wear resistance. For protection of the sliding counterface against wear, a polymer lip covering the carbon ring has been experimentally designed to flow over the carbon ring under high contact pressures, assuming the retained polymer disc under hydrostatic conditions. As such, the soft coating resists extremely high contact pressures (150 MPa) with good adhesion to the steel ball. However the application method should be carefully selected, sprayed coatings are the most favourable for low initial static friction. Calculated bulk and flashtemperatures revealed that the UHMWPE melting temperature is not exceeded, although softening of the coating under high contact pressures may be favourable for a ‘self-repairing’ ability. Pre-sliding creep and intermediate wear paths as manifesting in the ball-joint were simulated, indicating that the maximum design coefficient of friction is not exceeded. Test results are compared to FEM-calculations to verify the practical applicability of the modified sliding system.  相似文献   

3.
The high strength, low weight, and outstanding corrosion resistance properties possessed by titanium alloys have led to a wide range of successful applications in aerospace, automotive, and chemical industries and in power generation. Titanium alloys are characterized by poor wear resistance properties and their utilization has been excessive in nontribological applications. Surface texturing is a well-known and effective means of surface modification to improve the tribological properties of sliding surfaces. In the present work, modification of titanium alloy surfaces (Ti6Al4V) was done by lapping and laser surface texturing. The wear-resistant coating, AlCrN, was applied over the modified titanium alloy surfaces, with and without a chromium interlayer. Linear reciprocating sliding wear tests were performed with ball-on-flat contact geometry to evaluate the tribological performance of the coated alloy. The tests were performed under different normal loads for a period of 105 cycles at a frequency of 5 Hz. The friction force between the contact pair and displacement of the ball were simultaneously observed using a force transducer and laser displacement sensor. Optical microscopy was used to quantify the wear volume by measuring the wear scar diameter on both the specimen and the counterbody. Scanning electron microscopy (SEM) was employed to study the morphology of the wear scar. The characteristic behavior of the AlCrN coating such as bonding strength, wear volume, wear rate, and coefficient of friction with the chromium interlayer was evaluated and compared with the coating directly applied over the substrate. The coating on the textured surface, with the chromium interlayer showed better tribological performance.  相似文献   

4.
G. Zhang  H. Liao  C. Mateus  C. Coddet 《Wear》2006,260(6):594-600
In this work, polyetheretherketone (PEEK) and PEEK/SiC-composite coatings were deposited on Al substrates using a printing technique to improve their surfaces performance. The objective of this work was to investigate coatings friction and wear behaviour. Especially, the effect of sliding velocity and applied load on coatings friction coefficient and wear rate was evaluated in range of 0.2-1.4 m/s and 1-9 N, respectively. Compared to Al substrate, the coated samples exhibit excellent friction coefficient and wear rate. For PEEK coating, under an applied load of 1 N, the increase in sliding velocity can result in decreasing of friction coefficient at a cost of wear resistance. Under a load of 9 N, however, PEEK coating exhibits the highest friction coefficient and wear rate at an intermediate velocity. These influences appear to be mainly ascribed to the influence of contact temperature of the two relative sliding parts. In most test conditions, the composite coating exhibits better wear resistance and a little higher friction coefficient. SiC reinforcement in composite coating plays a combined role. First of all, it might lead to energy dissipation for activation of fracture occurred on the interface of PEEK and the powders. Moreover, it can reduce coating ploughs and the adhesion between the two relative sliding parts.  相似文献   

5.
Q. Luo 《Tribology Letters》2010,37(3):529-539
To investigate the origin of running-in friction in unlubricated sliding wear, a magnetron sputtered multilayer coating TiAlN/VN was tested on a ball-on-disc tribometer for a series of sliding durations from 10 to 1000 cycles, followed by careful observation of the obtained worn surfaces using an field-emission gun scanning electron microscope. Three steps of friction variation were found: (1) prior to wear particle generation, low initial friction coefficient was around 0.2–0.25 purely attributed to the asperity contact; (2) then it increased steeply to a range of 0.4–0.5 in the first 100 cycles following the generation, breaking and agglomeration of wear particles, and in particular the scaling-up of fish-scale-like tribofilm; (3) eventually it approached to a steady-state value around 0.5 when the friction was governed by the viscous shearing of the tribofilm. It is concluded that, under unlubricated sliding wear, the friction behaviour of transition metal nitride hard coating is dominated by the viscous shearing of tribofilm adhesively bonding to the parent nitride coating.  相似文献   

6.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

7.
Fretting damages are connected to numerous aspects like friction, wear, contact mechanics, fatigue and material sciences. Its quantification also requests to consider the loading history as well as the sliding condition. Based on a “fretting sliding” approach, and considering fretting wear test conditions, various palliative solutions have been investigated. Shot peening treatment, introducing compressive residual stresses, appears pertinent against crack propagation but ineffective against crack nucleation due to the activation of surface relaxation phenomena. Hard thin coatings present stable residual stresses independently of the sliding conditions. However, they only delay the crack nucleation process, when the coating is worn through, cracking phenomena are activated. To quantify the coating endurance against wear, an energy density approach has been developed. The stability of this approach has been confirmed regarding the contact size effect and illustrated through the analysis of synergic interaction between soft thick coating and solid lubricant.  相似文献   

8.
V.K. Jain  S. Bahadur 《Wear》1980,60(1):237-248
A wear equation has been derived using the concept of fatigue failure due to asperity interactions in the contact region between sliding bodies. One of the three principal stresses that arise in the contact zone under the effect of a normal as well as a tangential load is of tensile nature. It is this principal stress that has been considered to be responsible for the initiation and propagation of fatigue cracks. It is assumed that the deformation in the contact zone is of elastic nature and that both the contacting surfaces are covered with asperities that have spherical tips. The wear equation involves the asperity height distribution φ(z). The particular distribution for a sliding situation is determined from experimental studies of the topography of sliding surfaces. The wear equation indicates that the wear rate depends upon the fatigue properties of the weaker material, normal load, sliding speed, coefficient of friction, moduli of elasticity of the contacting materials, asperity density, asperity radius of curvature and the distribution and standard deviation of asperity heights. The variation of wear with these parameters as indicated by the wear equation is in agreement with the experimental studies already reported in the literature.  相似文献   

9.
Akira Ura  Akira Nakashima 《Wear》1986,110(3-4):409-418
The cutting action due to a protuberance between the rubbing surfaces in abrasive wear might be susceptible to adhesion at the rake surface in the direction of sliding.

In the present paper we discuss an approach to clarify the abrasive wear mechanism, which is dominated by the effect of the difference in the contact deformation between both surfaces on wear and friction related with abrasive wear, on the basis of experiments conducted under ultrahigh vacuum.

Although in practice it is generally very difficult to obtain a characteristic surface during sliding, we carried out experiments on surfaces that were as clean as possible to investigate the effect of the size of the deformed contact surface on the abrasive wear.

Consequently, we were able to confirm that the friction differs according to which of the test pieces is the harder and, if the friction pair is composed of the same material, because the contact surface is deformed differently in each case.  相似文献   


10.
The fundamentals of coating tribology are presented by using a generalised holistic approach to the friction and wear mechanisms of coated surfaces in dry sliding contacts. It is based on a classification of the tribological contact process into macromechanical, micromechanical, nanomechanical and tribochemical contact mechanisms, and material transfer. The important influence of thin tribo- and transfer layers formed during the sliding action is shown. Optimal surface design regarding both friction and wear can be achieved by new multi-layer techniques which can provide properties such as reduced stresses, improved adhesion to the substrate, more flexible coatings and harder and smoother surfaces. The differences between contact mechanisms in dry, water- and oil-lubricated contacts with coated surfaces is illustrated by experimental results from diamond-like coatings sliding against a steel and an alumina ball. The mechanisms of the formation of dry transfer layers, tribolayers and lubricated boundary and reaction films are discussed.  相似文献   

11.
齐效文  杨育林  薛飞 《润滑与密封》2007,32(7):20-25,28
采用羟基硅酸镁粉体作为润滑油添加剂,在MMU-5G材料端面摩擦磨损试验机上,研究了不同接触应力和相对滑动速度对45^#钢/45^#钢摩擦副磨损表面自修复膜生成的影响及其机制,借助SEM及EDS测试分析摩擦副的表面形貌及表面成分组成。结果表明,接触应力和相对滑动速度对羟基硅酸镁粉体添加剂在磨损表面形成自修复膜影响显著。在接触应力为1.53,3.06,4.59,7.64MPa和在相对滑动速度0.416m/s的工况条件下,试样磨损表面有自修复膜生成。接触应力为3.06MPa和相对滑动速度为0.416m/s时,易于在短时间内达到磨损-自修复动态平衡,自修复效果最为理想。自修复膜的生成过程包含磨粒磨损和摩擦化学反应2个阶段。自修复膜的生成使得试样摩擦磨损表面平整光滑,可以有效降低金属磨损。  相似文献   

12.
One of the considered research paths to reduce friction loss consists in optimizing the interactions between surfaces and lubricants. The latter may significantly change with the lubricant ageing. In this framework, the tribological behaviour of aged formulated lubricant is analysed for various low-speed reciprocating motions and with different nature of surfaces. This paper focuses on soot aggregate formation processes in a lubricated contact and on their correlation to friction. Although no aggregates have been observed in pure rolling conditions, pure sliding conditions may lead to the appearance of aggregates moving through the contact as a function of the nature of the surfaces. The analysis of their displacement within the contact is used to discuss their interactions with the surfaces. Moreover, we show that the velocity and the dwell time of the aggregate depend on the sliding speed. The morphology of these aggregates evolves over time, affecting friction behaviour. An additive law combining a contribution from the shear of the aggregates with another one due to the shear of a thin lubricant film surrounding the aggregate is then proposed to interpret friction origin and friction evolution with time of shear. The aggregate motion also varies with the nature of the surfaces: in particular, DLC–DLC couple reduces aggregation phenomena and maintains a low friction without apparent wear.  相似文献   

13.
Wear modeling is essential to predict and improve wear resistance of machine parts. This article presents a fatigue wear model of plane sliding pairs under dry friction. The wear model is constructed through developing a dynamic contact model of surfaces and proposing a mean fatigue damage constant of asperities. It is simpler and more practical than existing fatigue wear models because it describes the quantitative relationship between the wear behaviors of the plane sliding pairs and the main factors including the load and sliding speed, material property, friction property, and surface topography of the pairs. Furthermore, the wear model can predict the wear of each component of the sliding pairs. Reasonability and applicability of the wear model are validated via pin-on-disc wear tests. The wear model is applicable to predict the wear of the plane sliding pairs, which is characterized by friction fatigue of contact surfaces. The wear model can also be used to guide the tribological design of sliding pairs in machinery.  相似文献   

14.
J. Perry  T.S. Eyre 《Wear》1977,43(2):185-197
The friction and wear resistance of two commercial manganese phosphate coatings have been evaluated. Grey cast iron wear pins were treated by the two processes and were tested by sliding against a steel disc, under both lubricated and dry sliding wear conditions.Phosphating increases the sliding distance to scuffing as well as the scuffing load, whilst marginally reducing the coefficient of friction. No advantage was found in phosphating dry sliding surfaces.Phosphating reduces the likelihood of adhesive wear in marginal or poorly lubricated sliding couples. The choice of phosphate coating is primarily dependent on the surface finish of the sliding counterface; thin coatings are suitable if the counterface is smooth but thicker coatings are superior against rougher surfaces.  相似文献   

15.
Innumerable papers have been published so far describing tribological investigations of thin hard coatings based on TiN. Analysis of the presented results demonstrates a large dispersion of measured friction and wear numbers, whereas TiN-coated pieces and tools have proved their benefits in a broad area of application. Therefore an attempt was made to clarify the influences on friction and wear test results by varying the coating process, the tribological stresses due to sliding, fretting and rolling motion and by changing the surrounding medium. The results reveal that machining of substrate surfaces and type of tribological stresses due to sliding, fretting and rolling have an important influence. The formation of reaction layers is dominating the tribological behaviour in most cases.  相似文献   

16.
High hardness, high elastic modulus, low friction characteristics, high wear and corrosion resistance, chemical inertness, and thermal stability are factors that make diamond-like carbon (DLC) coatings the subject of many studies. For the same reasons they also seem suitable for use in, amongst others, machine components and cutting tools. While most studies in the literature focus on the influence of coatings on wear and friction in boundary lubrication and pure sliding contacts, few studies can be found concerning rolling and sliding elastohydrodynamic lubrication (EHL) friction, especially in the mixed and full film regime. In this article tests are carried out in a Wedeven Associates Machine tribotester where an uncoated ball and disc pair is compared to the case of coated ball against uncoated disc, coated disc against uncoated ball, and coated disc against coated ball. The tests are conducted at two different temperatures and over a broad range of slide-to-roll ratios and entrainment speeds. The results are presented as friction maps as introduced in previous work (Bj?rling et al. in J Eng Tribol 225(7):671, 2011). Furthermore a numerical simulation model is developed to investigate if there is a possibility that the hard, thin DLC coating is affecting the friction coefficient in an EHL contact due to thermal effects caused by the different thermal properties of the coating compared to the substrate. The experimental results show a reduction in friction coefficient in the full film regime when DLC-coated surfaces are used. The biggest reduction is found when both surfaces are coated, followed by the case when either ball or disc is coated. The thermal simulation model shows a substantial increase of the lubricant film temperature compared to uncoated surfaces when both surfaces are coated with DLC. The reduction in friction coefficient when coating either only the ball or the disc are almost the same, lower than when coating both the surfaces but still higher than the uncoated case. The findings above indicate that it is reasonable to conclude that thermal effects are a likely cause for the decrease in coefficient of friction when operating under full film conditions, and in the mixed lubrication regime when DLC-coated surfaces are used.  相似文献   

17.
在MM-200摩擦磨损试验机上研究了青铜-石墨热喷涂层在干摩擦和水润滑条件下的摩擦磨损性能,采用扫描电镜(SEM)对磨损表面形貌进行了观测和采用X射线能谱分析(XPS)分析了涂层成分。结果表明,在水润滑条件下涂层摩擦因数和磨损率均低于干摩擦条件下;在水润滑条件下磨损机制为轻微磨粒磨损和犁削磨损,在干摩擦下主要是较为严重的粘着磨损和犁削。这是由于水润滑降低了摩擦副界面温度,提高了石墨润滑膜的韧性,改善了润滑效果,从而阻止了粘着磨损的发生,水还促进了钢偶件表面致密氧化膜的形成,从而减轻磨损。因此水润滑对涂层磨损性能有较大影响。  相似文献   

18.
双粗糙面滑动摩擦热力耦合有限元分析   总被引:1,自引:0,他引:1  
建立了双粗糙分形表面滑动摩擦的热力耦合模型,综合考虑了随温度变化的材料性能、材料的弹塑性变形及摩擦副的磨损失效等因素,以摩擦材料的性能参数及设定的材料损伤参数为实例对双粗糙分形表面滑动摩擦全过程的温度场、应力场及磨损进行了数值模拟,分析得到了滑动摩擦过程中摩擦界面最高接触温度、接触应力的分布、磨损率及其变化规律,实现了对双粗糙面摩擦磨损情况的模拟及预测。  相似文献   

19.
Recent advances in smart surface engineering and coating technologies offer unique possibilities for better controlling friction and wear under boundary or marginally lubricated rolling, sliding or rotating contact conditions. Specifically, such coatings can be tailored to meet the increasingly multi-functional application needs of future engine systems by enabling them to operate in lower viscosity oils with reduced sulfur and phosphorous. Using these technologies, researchers have already pioneered the development of a variety of nano-composite and super-hard coatings providing longer tool life in demanding machining and manufacturing applications. The same technologies can also be used in the design and development of novel coating architectures providing lower friction and wear under boundary-lubricated sliding conditions. For example, such coatings can be tailored in a very special way that while one of the phases can favorably react with certain additives in engine oils to result in an ideal chemical boundary film; the other phases can provide super-hardness and hence resists wear and scuffing. Because of their very dense microstructure and high chemical inertness, these coatings can also provide superior protection against oxidation and corrosive attacks in aggressive environments. The use of solid lubricant coatings may also improve the tribological properties of sliding contact interfaces under boundary lubricated sliding conditions. When fluid and boundary films fails or is broken down, such coatings can carry the load and act as a back-up lubricant. Other smart surface technologies such as laser texturing and/or dimpling, laser-glazing and -shotpeening have also become very popular in recent years. In particular, laser texturing of control or coated surfaces have opened up new possibilities for further manipulation of the lubrication regimes in classical Stribeck diagrams. Controlling dimple size, shape, orientation, and density, researchers were able to modify both the width and the height of the boundary lubrication regimes and thus achieve lower friction and wear at sliding and rotating contact interfaces. Overall, smart surface engineering and coating technologies have matured over the years and they now become an integral part of advanced machining and manufacturing applications. They can also be used to meet the increasingly stringent and multi-functional application needs of demanding tribological applications. In this paper, selected examples of recently developed novel surface engineering and coating technologies are introduced, and the fundamental tribological mechanisms that control their friction and wear behavior under boundary lubrication regimes are presented.  相似文献   

20.
Experimental results of studying the wear of a model sliding tribosystem, which consists of a rotating shaft and a plane bearing, are presented. An interrelation between dynamic processes that occur in boundary films and processes of adhesive wear of surfaces under friction has been established. A desorption-adhesion mechanism of wear under boundary lubrication has been proposed; this mechanism is based on the localization of the adhesive wear of surfaces in the diffuser zone of a contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号