首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
BACKGROUND & AIMS: Enteric neurons can be characterized by their chemical coding, projections, and morphology. The aim of this study was to describe the different classes of human colonic circular muscle motor neurons. METHODS: Human colonic circular muscle motor neurons were identified by retrograde tracing with 1,1'-didodecyl 3,3,3',3'-indocarbocyanine perchlorate (Dil) applied to the circular muscle layer. Whole-mount preparations of the myenteric plexus were then double-labeled with antisera to choline acetyltransferase (ChAT) and/or nitric oxide synthase (NOS), or NOS and vasoactive intestinal peptide (VIP), and the position and immunoreactivity of Dil-filled neurons were recorded. RESULTS: Fifty-two percent of all Dil-filled neurons were ChAT immunoreactive, and 86% of these projected up to 11 mm orally, with 14% projecting short distances anally. Forty-eight percent of the Dil-filled neurons were NOS immunoreactive, and 77% of these projected up to 19 mm anally, with 23% projecting no more than 6 mm orally. A subpopulation of these NOS-immunoreactive motor neurons were also VIP-immunoreactive. A small population of myenteric neurons was immunoreactive for both ChAT and NOS, but none projected to the circular muscle. NOS-immunoreactive motor neurons projected for longer distances than those with ChAT immunoreactivity and were larger. CONCLUSIONS: There are two classes of human colonic motor neurons: one is excitatory (ChAT-immunoreactive) and mainly projects orally and the other is inhibitory (NOS +/- VIP immunoreactive) and projects preferentially anally.  相似文献   

2.
The projections of enteric neurons to the circular muscle of the guinea pig gastric corpus were investigated systematically by using the retrogradely transported fluorescent carbocyanine dye 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI), applied to the muscle layer or myenteric plexus in vitro. DiI-labeled motor neuron cell bodies were located up to 6.3 mm aboral, 17 mm oral, and up to 20 mm circumferential to the DiI application site. Labeled nerve fibers ran for long distances from the DiI application site toward the greater and lesser curvatures, where they coursed parallel to the bundles of the "gastric sling" muscle. The majority of labeled cells were located toward the lesser curvature of the stomach. Nerve cell bodies that were aboral to the DiI application site were usually small, immunoreactive for choline acetyltransferase, and, thus, were likely to be excitatory motor neurons. Neurons that were located orally were larger, fewer in number, and immunoreactive for nitric oxide synthase and, thus, were likely to be inhibitory motor neurons. Application of DiI directly to the myenteric plexus filled neurons up to 15 mm aborally and up to 21 mm orally but labeled few neurons circumferentially. All nerve cells that were filled from either the circular muscle or the myenteric plexus had Dogiel type I morphological features. These results demonstrate a clear polarity of projection of inhibitory and excitatory motor neurons and a functionally continuous innervation of the circular and gastric sling muscle layers. Nonmotor neurons in the myenteric plexus were demonstrated, but neurons with Dogiel type II morphological features are apparently absent.  相似文献   

3.
Using the retrograde neuronal tracers Fast blue and Fluorogold, the topographical distribution and morphological features of porcine colonic neurons projecting to the cranial (superior) mesenteric ganglion have been investigated. Two to four weeks after injection of the tracer into the cranial mesenteric ganglion of immature pigs, labelled neurons were found throughout the colon. In the myenteric and outer submucous plexuses, they were present in ganglia situated to the side of the mesenteric attachment. The highest density of labelled neurons was observed at the end of the ascending colon, which in the pig represents 78-80% of the total colon length. The viscerofugal neurons had a multidendritic appearance and part of them were immunoreactive for calcitonin gene-related peptide or serotonin. This study has revealed similarities but also significant differences in the colono-sympathico-colonic pathways between the pig and small laboratory animals such as the guinea-pig.  相似文献   

4.
BACKGROUND & AIMS: Adenosine triphosphate (ATP) acting at P2 receptors mediates some fast excitatory postsynaptic potentials (fEPSPs) in myenteric neurons of guinea pig ileum. The present studies investigate the distribution of purinergic fEPSPs along the length of the gut and characterize the P2-receptor subtype mediating fEPSPs. METHODS: Conventional intracellular electrophysiological methods were used to record from myenteric neurons in vitro. RESULTS: At a membrane potential of -97 +/- 1 mV, the amplitude (25 +/- 1 mV; n = 307) of fEPSPs was similar along the gut. Hexamethonium (100 micromol/L) inhibited fEPSPs in the gastric corpus by 98% +/- 1% (n = 31) and in the duodenum, ileum, taenia coli, proximal colon, and distal colon by 42%-55%. In the presence of hexamethonium, suramin (100 micromol/L) or the P2X antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 10 micromol/L) reduced the control fEPSP amplitude in the duodenum, ileum, taenia coli, proximal colon, and distal colon by 71%-84%. The pharmacology of the purinergic fEPSPs was investigated in detail in the ileum. Noncholinergic fEPSPs were concentration-dependently (1-30 micromol/L) inhibited by PPADS (50%-inhibitory concentration, 3 micromol/L). In addition, alpha,beta-methylene 5'-adenosine triphosphate (1 micromol/L) also reduced purinergic fEPSPs. CONCLUSIONS: Fast EPSPs mediated in part through P2X receptors are prominent in myenteric neurons along the small and large intestines but are rare in the gastric corpus.  相似文献   

5.
Nerve circuits within the proximal duodenum were investigated using a combination of immunohistochemistry for individual neuron markers and lesion of intrinsic nerve pathways to determine axon projections. Cell shapes and axonal projections were also studied in cells that had been injected with a marker substance. Several major neuron populations were identified. Calbindin immunoreactivity occurred in a population of myenteric nerve cells with Dogiel type II morphology. These had axons that projected to other myenteric ganglia, to the circular muscle and to the mucosa. All were immunoreactive for the synthesizing enzyme for acetylcholine, choline acetyltransferase, and some were also immunoreactive for calretinin. Myenteric neurons with nitric oxide synthase immunoreactivity projected anally to the circular muscle. These were also immunoreactive for vasoactive intestinal peptide, and proportions of them had enkephalin and/or neuropeptide Y immunoreactivity. It is suggested that they are inhibitory motor neurons to the circular muscle. A very few (about 2%) of nitric oxide synthase-immunoreactive neurons had choline acetyltransferase immunoreactivity. Tachykinin (substance P)-immunoreactive nerve cells were numerous in the myenteric plexus. Some of these projected orally to the circular muscle and are concluded to be excitatory motor neurons. Others projected to the tertiary plexus which innervates the longitudinal muscle and others provided terminals in the myenteric plexus. Two groups of descending interneurons were identified, one with somatostatin immunoreactivity and one with vasoactive intestinal peptide immunoreactivity. The two most common nerve cells in submucous ganglia were neuropeptide Y- and vasoactive intestinal peptide-immunoreactive nerve cells. Both provided innervation of the mucosa. There was also a population of calretinin-immunoreactive submucous neurons that innervated the mucosal glands, but not the villi. Comparison with the ileum reveals similarities in the chemistries and projections of neurons. Differences include the almost complete absence of nitric oxide synthase immunoreactivity from vasoactive intestinal peptide-immunoreactive interneurons in the duodenum, the projection of calbindin-immunoreactive Dogiel type II neurons to the circular muscle and the absence of tachykinin-immunoreactivity from these neurons.  相似文献   

6.
Opioid-produced antinociception in mammals seems to be mediated in part by pathways originating in the periaqueductal gray (PAG) and the rostroventral medulla (RVM), and these pathways may include serotonergic neurons. In the present study, we examined the relationship of the cloned mu- and delta-receptors (MOR1 and DOR1, respectively) to PAG neurons projecting to the RVM, and RVM neurons projecting to the dorsal spinal cord. This was carried out by combining immunocytochemical staining for MOR1, DOR1, and serotonin with fluorescent retrograde tract-tracing. Of 133 retrogradely labeled cells in the RVM, 31% were immunoreactive for MOR1. Of the double-labeled cells, 41% also were immunoreactive for 5HT. Fifty-three percent of retrogradely labeled cells were apposed by DOR1-ir varicosities; 29% of the apposed cells were immunoreactive for 5HT. In the mesencephalon, cells retrogradely labeled from the RVM were usually surrounded by MOR1-ir structures; however, retrogradely labeled cells were never observed to be immunoreactive for MOR1. Similarly, retrogradely labeled cells in the caudal midbrain were seldom, if ever, labeled for DOR1; however, they frequently were apposed by DOR1-ir varicosities. Of 156 retrogradely labeled profiles from three rats, 52 (33%) were apposed by DOR1-ir varicosities. We conclude that both mu- and delta-opioid receptors could be involved in the antinociception mediated by the PAG-RVM-spinal cord circuit. In addition, opioids seem likely to have both direct and indirect effects on spinally projecting RVM cells in general, and on serotonergic RVM cells in particular.  相似文献   

7.
BACKGROUND & AIMS: Functional differences in the inhibitory neural pathway between the proximal and the distal colon are unknown. METHODS: We investigated the nonadrenergic, noncholinergic (NANC) relaxation, nitric oxide synthase (NOS) synthesis, and NOS messenger RNA (mRNA) expression of the myenteric plexus in the proximal and the distal colon in rats. RESULTS: Transmural nerve stimulation of the neuromuscular preparations from the proximal colon showed greater NANC relaxations than those from the distal colon. NANC relaxations were abolished by the NO biosynthesis inhibitor (NG-nitro-L-arginine methyl ester) in the proximal and the distal colon, suggesting mediation by NO released from the myenteric plexus. The average number of NOS-immunoreactive cells was significantly higher in the tissue from the proximal colon than in the tissue from the distal colon. Western and Northern blot analyses showed a higher density of the immunoreactive NOS band and the NOS mRNA band in the tissue from the proximal colon than in that from the distal colon. CONCLUSIONS: These observations indicate that the number of NOS-containing neurons and the NOS activity are increased in the myenteric plexus of the proximal colon compared with the distal colon, resulting in greater NANC relaxation in the proximal colon. These findings may explain the physiological role of the proximal colon as an organ for fecal storage and absorption of excess fluid.  相似文献   

8.
The rostral ventromedial medulla (RVM) is an important mediator of the supraspinal component of opioid antinociception. Previous studies have suggested that activation of the cloned mu- and delta-opioid receptors (MOR1 and DOR1 respectively) in the RVM produces the antinociception mediated by spinally projecting neurons. In the present study, we investigated the expression of mRNA encoding either MOR1 or DOR1 in the RVM of rats. In addition, we examined quantitatively the expression of MOR1 and DOR1 mRNAs in spinally projecting RVM neurons including serotonergic (5HT) cells by using in situ hybridization, immunocytochemistry, retrograde tract-tracing, and the physical disector. Brainstem neurons were labeled in 14 male Sprague-Dawley rats by applying Fluoro-Gold (FG) topically to the dorsal surface of the lumbosacral spinal cord. Five-micrometer-thick cryostat sections were cut and in situ hybridization was performed by using full-length cRNA probes labeled with 35S-UTP. We found that 43% of RVM projection neurons expressed MOR1 mRNA and 83% of RVM projection neurons expressed DOR1 mRNA. Of 192 retrogradely labeled cells in the RVM, 51 cells (27%) were immunoreactive for 5HT. Of this population, half appeared to be labeled for the mRNA encoding MOR1 and over three-fourths appeared to be labeled for the mRNA encoding DOR1. Thus, we conclude that bulbospinal neurons express MOR1 and DOR1; moreover, MOR1 and DOR1 are expressed by significant proportions of 5HT neurons projecting to or through the dorsal spinal cord.  相似文献   

9.
The aims of the present study were: (1) to evaluate BODIPY forskolin as a suitable fluorescent marker for membrane adenylyl cyclase (AC) in living enteric neurons of the guinea-pig ileum; (2) to test the hypothesis that AC is distributed in several subpopulations of enteric neurons; (3) to test the hypothesis that the distribution of AC in the myenteric plexus is not unique to AH/Type 2 neurons. BODIPY forskolin was used to assess the co-distribution of AC in ganglion cells expressing the specific calcium-binding proteins (CaBPs), calretinin, calbindin-D28, and s-100. Cultured cells or tissues were incubated with 10 microM BODIPY forskolin for 30 min and fluorescent labeling was monitored by using laser scanning confocal microscopy. BODIPY forskolin stained the cell soma, neurites, and nerve varicosities of Dogiel Type I or II neurons. About 99% of myenteric and 27% of submucous ganglia contained labeled neurons. About 14% of myenteric and 3% of submucous glia with immunoreactivity for s-100 protein displayed BODIPY forskolin fluorescence. BODIPY forskolin differentially labeled myenteric neurons immunoreactive for calbindin-D28 (80%) and calretinin (17%). The majority (63%) of BODIPY forskolin-labeled myenteric neurons displayed no immunoreactivity for either CaBP. In submucous ganglia, the dye labeled 44.6% of calretinin-immunoreactive neurons, representing 21% of all labeled neurons; it also labeled varicose nerve fibers running along blood vessels. AC thus exists in myenteric Dogiel type II/AH neurons, enteric cholinergic S/Type 1 neurons, and other unidentified non-cholinergic S/Type 1 neurons. Our data also support the hypothesis that AC is expressed in distinct functional subpopulations of AH and S neurons in enteric ganglia, and show that BODIPY forskolin is a suitable marker for AC in immunofluorescence co-distribution studies involving living cells or tissues.  相似文献   

10.
The effect of prostaglandin E2 (PGE2) on the activity-related expression of the proto-oncogene c-fos in specific populations of enteric neurons was investigated. Segments of guinea-pig ileum were incubated in vitro in the presence or absence of PGE2, and whole mounts of the myenteric and submucosal plexus were prepared for immunocytochemical localization of Fos, VIP and NPY. Control tissues exhibited a low number of Fos-immunoreactive (Fos-IR) neurons (7 +/- 2% of total). Incubation of the tissues with 10-1000 nM PGE2 for 30 min caused a concentration-dependent increase in Fos-IR submucosal neurons (maximum at 100 nM; 39 +/- 6%), which was not inhibited by TTX. PGE2 did not evoke an increase in Fos-IR myenteric neurons. In double labeling experiments, Fos colocalized exclusively with VIP in the submucosal plexus, and not with NPY. Exposure of stripped segments of guinea pig ileum in Ussing chambers to 100 nM PGE2 evoked an increase in short circuit current (20 +/- 7 microA/cm2), of which the initial rapid phase could be abolished by TTX, and not by atropine and hexamethonium. It is concluded that PGE2 can activate VIP non-cholinergic secretomotor neurons.  相似文献   

11.
Within the basal forebrain, gamma-aminobutyric acid (GABA)-synthesizing neurons are codistributed with acetylcholine-synthesizing neurons (Gritti et al. [1993] J. Comp. Neurol. 329:438-457), which constitute one of the major forebrain sources of subcortical afferents to the cerebral cortex. In the present study, descending projections of the GABAergic and cholinergic neurons were investigated to the lateral posterior hypothalamus (LHp) through which the medial forebrain bundle passes and where another major forebrain source of subcortical afferents is situated. Retrograde transport of cholera toxin b subunit (CT) from the LHp was combined with immunohistochemical staining for glutamic acid decarboxylase (GAD) and choline acetyl transferase (ChAT) using a sequential peroxidase-antiperoxidase (PAP) technique. A relatively large number of GAD+ neurons (estimated at approximately 6,200), which represented > 15% of the total population of GAD+ cells in the basal forebrain (estimated at approximately 39,000), were retrogradely labeled from the LHp. These cells were distributed through the basal forebrain cell groups, where ChAT+ cells are also located, including the medial septum and diagonal band nuclei, the magnocellular preoptic nucleus, and the substantia innominata, with few cells in the globus pallidus. In these same nuclei, a small number of ChAT+ cells were retrogradely labeled (estimated at approximately 800), which represented only a small percentage (< 5%) of the ChAT+ cell population in the basal forebrain (estimated at approximately 18,000). Both the GAD+ and ChAT+ LHp-projecting neurons represented a small subset of their respective populations in the basal forebrain, distinct from the magnocellular, presumed cortically projecting, basal neurons. In addition to the GAD+ cells in the basal forebrain, GAD+ cells in the adjacent preoptic and anterior hypothalamic regions were also retrogradely labeled in significant numbers (estimated at approximately 5,500) and proportion (> 20%) of the total population (estimated at approximately 30,000) from the LHp. The retrogradely labeled GAD+ neurons were distributed in continuity with those in the basal forebrain through the lateral preoptic area, medial preoptic area, bed nucleus of the stria terminals, and anterior and dorsal hypothalamic areas. Of the large number of cells that project to the LHp in the basal forebrain and preoptic-anterior hypothalamic regions (estimated at approximately 66,000), the GAD+ neurons represented a significant proportion (> 15%) and the ChAT+ neurons a very small proportion (approximately 2%). The relative magnitude of the GABAergic projection suggests that it may represent an important inhibitory influence of the descending efferent output from the basal forebrain and preoptic-anterior hypothalamic regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Previous studies have shown that the intestinal peristaltic reflex initiated by mucosal stimulation is mediated by release of 5-hydroxytryptamine (HT) from enterochromaffin cells; 5-HT acts via 5-HT4 receptors in rat and human, and via both 5-HT4 and 5-HT3 receptors in guinea pig to activate intramural sensory neurons that release calcitonin gene-related peptide. In this study, selective agonists and antagonists were used to examine the involvement of 5-HT4 and 5-HT3 receptors in colonic propulsion. The velocity of propulsion was measured with artificial fecal pellets introduced into the orad end of an isolated guinea pig colonic segment. Control velocity ranged from 0.5 to 3.3 mm/s; mean +/- S.E.M., 1.3 +/- 0.1 mm/s. The 5-HT4 antagonist, GR 113808A, and the 5-HT3 antagonist, LY 278584, decreased the velocity of pellet propulsion in a concentration-dependent fashion (39 +/- 2% and 47 +/- 1% decrease at 10 microM, respectively). A combination of both antagonists (10 microM each) was additive, decreasing the velocity by 82 +/- 3% to 84 +/- 4%. The selective 5-HT4 agonists, HTF 919 and R093877, as well as 5-HT in the presence of the 5-HT2a antagonist, ketanserin, increased the velocity of propulsion in a concentration-dependent fashion with EC50s of 6.9 +/- 0.1 nM, 37.4 +/- 1.0 nM, and 3.9 +/- 0. 1 nM, respectively. Compared with HTF 919, R093877 was less potent and appeared to be a partial agonist. All three agonists were effective at submicromolar concentrations; at concentrations above 1 microM, there was no increase in the velocity of propulsion. We conclude that the presence of fecal pellets triggers the release of 5-HT, which acts via both 5-HT3 and 5-HT4 receptors to regulate propulsive activity in guinea pig colon.  相似文献   

13.
The synthesis of a series of azabicyclic indole esters is described and their potency reported as 5-HT4 receptor antagonists. Optimization of the most potent compound (19) by preparing the corresponding oxazino[3,2-a]indole ester afforded 34, which had a pIC50 of 9.5 in the guinea pig distal colon longitudinal muscle myenteric plexus preparation.  相似文献   

14.
Spinally projecting neurons of the ventromedial medulla (VMM) compose an important efferent pathway for the modulation of nociception. These neurons receive a substantial gamma-aminobutyric acid (GABA)-ergic input, but the GABA receptor that mediates this input is unknown. This study examined the distribution of GABA(A) receptor alpha1 and alpha3 subunits in serotonergic and nonserotonergic neurons of the VMM that project to the dorsal horn in the rat. A pledget of Gelfoam soaked in Fluoro-Gold was placed at the thoracolumbar junction of the spinal cord to label spinally projecting neurons. Alternate sections of the medulla were then incubated with a mixture of antisera to either serotonin and the alpha1 subunit, or to serotonin and the alpha3 subunit of the GABA(A) receptor. Nearly 30% of spinally projecting neurons in the VMM were immunoreactive for the alpha1 subunit. A similar percentage of spinally projecting neurons in the VMM were immunoreactive for the alpha3 subunit, although diffuse cellular labeling combined with intense staining of processes in the neuropil precluded a rigorous semi-quantitative estimation of this population. No alpha1-subunit-immunoreactive neurons colocalized serotonin. In contrast, serotonergic neurons were immunoreactive for the alpha3 subunit. However, these double-labeled neurons were a modest percentage of the serotonergic population. A small percentage of spinally projecting serotonergic neurons was immunoreactive for the alpha3 subunit. These results suggest that significant numbers of spinally projecting serotonergic and nonserotonergic neurons of the VMM possess GABA(A) receptors that differ in their respective subunit compositions and that both classes of neurons may mediate the antinociception produced by the microinjection of GABA(A) receptor antagonists in the VMM.  相似文献   

15.
Anterograde tracing with the carbocyanine tracer DiI and the aminostyrol derivative DiA was used to selectively label fibers from the nucleus ambiguus, dorsal motor nucleus and nodose ganglion, respectively, terminating in the rat esophagus, and to compare them with the innervation of the gastric fundus in the same animals. Ambiguus neurons terminated on motor endplates distributed mainly to the ipsilateral half of the esophagus. There was no evidence of preganglionic innervation of myenteric ganglia from ambiguus neurons. Neurons of the dorsal motor nucleus supplied sparse fibers to only about 10% of enteric ganglia in the esophagus while they innervated up to 100% of myenteric ganglia in the stomach. Neurons of the nodose ganglion terminated profusely on more than 90% of myenteric ganglia of the esophagus and on about 50% of ganglia in the stomach. Afferent vagal fibers were also frequently found in smooth muscle layers starting at the esophago-gastric junction. In contrast, they were extremely rare in the striated muscle part of the esophagus. These morphological data suggest a minor influence of neurons of the dorsal motor nucleus and a prominent influence of vagal afferent terminals onto myenteric neurons in the rat esophagus.  相似文献   

16.
The localization of calretinin mRNA was studied in the rat and guinea pig inner ear by in situ hybridization, and compared to the distribution of the protein previously examined by immunocytochemistry. Radioactive and non-radioactive in situ hybridization (ISH) were performed using oligonucleotide probes labelled with 35S or digoxigenin. Radioactive ISH was more sensitive than non-radioactive ISH. In cochlear and vestibular ganglia, calretinin mRNA was localized in subpopulations of neurons with patterns of distribution similar to those shown by immunocytochemistry. By contrast, the observations in the sensory epithelia differed with the two techniques, ISH revealing less positive structures than immunocytochemistry. Rat inner hair cells and guinea pig inner hair cells, Hensen's cells and Deiters cells, which had been described strongly immunoreactive, appeared positive with radioactive but not with non-radioactive ISH. On the other hand, rat vestibular type II hair cells and guinea pig interdental cells of the spiral limbus which were faintly immunoreactive were not positive with both ISH techniques.  相似文献   

17.
When the ascending reticular axonal system is stimulated, the responses of distal structures (e.g., the cerebral cortex) appear to outlast the stimulus; these longlasting effects could reflect the intrinsic nature of the distal structure, or the response could reflect an interaction among the reticular cells which tends to prolong the effects of stimulation. To examine the latter hypothesis, single units with ascending axons (projecting units) were recorded in the cat rostral rhombencephalon in acute experiments conducted under halothane-nitrous oxide anesthesia. Stimulation of areas to or through which axons of reticular neurons projected (midbrain tegmentum and lower tectum, medial thalamus, and basal forebrain) produced a consistent and specific response which was elicited only from these areas: suppression of spontaneous activity which was typically elicited from several areas having ascending axons. One-half of these responses were accompanied by a short latency-single spike synaptic excitation. Stimulating areas more than 1.0 mm from the ascending trajectory never produced this response, whereas the number of responses was directly related to the number of projecting axons identified in any one experiment from a given site. Thus, the predominant effect of stimulating within the ascending axonal trajectory was suppression of spontaneous activity in the projecting units, not an 'en cascade' activation of these units; on the contrary, the only type of excitation encountered was a single, short latency spike. Therefore, any effects of stimulation within the ascending reticular pathway which appear to outlast the stimulus (as previously described in the literature) cannot be ascribed to a reverberating (excitatory) circuit among projecting units. A possible source of the synaptic responses of projecting units is a retrograde activation of collaterals interconnecting the reticular cells. If such interaction exists, it is specifically distributed among cells with ascending axons, as the responses were only observed in a very few units not identified by antidromic excitation; however, other evidence is adduced to support the belief that these few units were projecting units whose axons were beyond the reach of the stimulating electrodes. Futhermore, the axons may be bundled such that units with axons nearest that of a given projecting unit give rise to the most extensive synaptic interactions; the activation of these nearby axons suppresses spontaneous activity, while axons farther away have a greater possibility of being excitatory in nature. Should such a medium for interaction exist, reticular collateral interactions might be seen to exist specifically for the purpose of decreasing the activity of cells destined for similar rostral target structures.  相似文献   

18.
A systematic examination has been made of the active and passive electrophysiological properties and synaptic inputs of forty-four randomly impaled submucosal neurones in the proximal colon of the guinea-pig to compare these characteristics directly with those of submucosal neurones in the caecum (n = 70) and descending colon (n = 45). Within each of the three electrophysiological classes of submucosal neurones identified (S, S/AH and AH), no statistically significant regional differences were found with respect to the resting membrane potential, membrane time constant or input resistance between neurones of the proximal colon, descending colon and caecum. Of submucosal neurones from the proximal colon, forty-three of forty-four (98%) received fast excitatory synaptic potentials (fast EPSPs); thirty-nine (91%) were S neurones and the others were S/AH neurones; only one of the forty-four cells (2%) was an AH neurone. An idazoxan-sensitive slow inhibitory postsynaptic potential (slow IPSP) was induced in thirty of forty-three S and S/AH neurones (70%) of the proximal colon, compared with sixty-one of sixty-six caecal neurones (92%) and twelve of forty-one neurones (29%) in the descending colon. The mean (+/- S.E.M.) amplitude of the slow IPSP in proximal colonic neurones was 17 +/- 1 mV (range, 6-30 mV; n = 30), compared with the significantly larger synaptic response (25 +/- 1 mV; range, 7-38 mV; n = 66; P < 0.05) recorded in the caecum; the mean slow IPSP amplitude in the descending colon was significantly smaller (12 +/- 2 mV; range, 5-27 mV; n = 12; P < 0.05) than that in the caecum. In the proximal colon and caecum, only those neurones with a slow IPSP had a hyperpolarizing response to noradrenaline, whereas about 50% of those neurons of the descending colon that lacked a slow IPSP were hyperpolarized by noradrenaline, acting via alpha 2-adrenoceptors. Thus, the electrophysiological characteristics of the submucosal neurones of the proximal colon more closely resemble those of the caecum than those of the descending colon, of which many do not have a functional noradrenergic synaptic input. Furthermore, the results confirm that there are fundamental regional differences in the guinea-pig large intestine with respect to the synaptic organization of submucosal neurones of particular electrophysiological classes.  相似文献   

19.
Distension of a balloon placed in the proximal colon of anesthetized, guanethidine- and naloxone-pretreated guinea pigs elicited a series of long-lasting regular phasic pressure waves which were suppressed by hexamethonium. Activity evoked by a low degree of balloon distension was largely, but not completely, suppressed by atropine. Further balloon distension in atropine-treated animals enabled us to study the effect of tachykinin receptor antagonists on the atropine-resistant and hexamethonium-sensitive response to distension. The selective tachykinin receptor antagonists, (+/-)-CP 96,345 for the NK-1 receptor and L 659,877, MEN 10,376 and SR 48,968 for the NK-2 receptor, inhibited with varying potency the atropine-resistant response to distension. These antagonists also blocked the contraction of the guinea pig colon produced by the i.v. administration of selective NK-1 and NK-2 receptor agonists. In vitro experiments, using mucosa-free circular muscle strips from the guinea pig colon, proved the existence of functional NK-1 and NK-2 receptors in this tissue. We conclude that both NK-1 and NK-2 receptors participate in the atropine-resistant reflex contractions produced by localized balloon distension of the guinea pig colon in vivo.  相似文献   

20.
The role of vasoactive intestinal peptide (VIP) was investigated when mucosal stroking and 5-hydroxytryptamine (5-HT) were used to activate neural reflexes that stimulate chloride secretion in the guinea pig colon. Muscle-stripped segments of colon containing intact submucosal ganglia without myenteric ganglia were set up in modified flux chambers in order to record short-circuit current (Isc). Mucosal stroking with a brush for 1 s or a pulse of 5-HT (injection of 15 microliters of 100 microM 5-HT into 1.5 ml of mucosal solution) caused an increase in Isc that was reduced by the VIP antagonist, neurotensin6-11-VIP7-28, in a concentration-dependent manner. The Isc responses to mucosal stroking and a 5-HT pulse were reduced by 53% and 58%, respectively, by 2 microM neurotensin6-11-VIP7-28. The residual Isc response in the presence of neurotensin6-11-VIP7-28 was abolished by atropine. Blockade of 5-HT1P receptors on submucosal afferent neurons decreased Isc responses to stroking or a 5-HT pulse. The residual Isc response after 5-HT1P receptors were blocked was reduced by only 11-14% by neurotensin6-11-VIP7-28. In the presence of blockade of both 5-HT1P and VIP receptors, atropine abolished the Isc response to both stimuli. The observations suggest that the neural circuitry activated by stroking includes at least two independent pathways. One pathway contains VIP neurons which receive inputs directly or indirectly from 5-HT1P receptor-containing afferents. A second pathway involves muscarinic cholinergic transmission that is independent of 5-HT1P and VIP receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号