首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
新型Co-Mo/TiO_2加氢转化催化剂不预硫化过程的研究   总被引:4,自引:0,他引:4  
讨论了新型Co┐Mo/TiO2加氢转化催化剂的反应机理和影响反应的诸因素,结果表明,新型催化剂与传统Co┐Mo/Al2O3加氢转化催化剂相比具有不预硫化和高初活性的特点  相似文献   

2.
本文研究了催化剂焙烧条件,还原过程因素(还原气组成、升温速率和还原气空速),催化剂制备方法及反应温度、压力、H2/CO2进料比、空速和催化剂的热稳定性。探讨了Cu-Zn-O催化剂各组成的功能.并弄清了催化剂的反应特性,获得了最佳操作条件.  相似文献   

3.
将CuSO4·52O、NiSO4·6H2O用Na2CO3共沉淀,经干燥焙烧后,用N2、H2混合气还原,在CO2保护下转移到硬化油中制备了一系列铜镍催化剂,并在常压下考察了铜镍比、焙烧温度、还原温度、氢氯比等对催化剂用于大豆油催化加氯油性的影响。  相似文献   

4.
《应用化工》2017,(4):663-667
采用室温固相研磨法制备原位还原Cu/ZnO催化剂,并将其用于CO_2加氢合成甲醇反应。利用XRD、BET、TG-DTG等手段对催化剂性能进行了表征,利用高压固定床反应装置对催化剂活性进行了评价,考察了甲酸用量、焙烧温度及升温速率等条件对催化剂性能的影响。结果表明,室温固相研磨得到的前驱体在N_2中焙烧,前驱体氧化分解和还原活化一步完成,无需外加H_2还原,直接制得了原位还原Cu/ZnO催化剂。随甲酸用量、焙烧温度、升温速率增加,催化活性呈现先增加后减小趋势。Cu/Zn摩尔比为1∶1和HCOOH/(Cu+Zn)摩尔比11∶1,前驱体于N_2中焙烧温度573 K和升温速率3 K/min时,制得的原位还原Cu/ZnO催化剂在CO_2加氢合成甲醇反应中呈现最佳活性,CO_2转化率和甲醇产率分别达到了33.44%和28.17%。与空气中焙烧再外加5%H_2还原的Cu/ZnO催化剂相比,原位还原Cu/ZnO催化剂比表面积较高,Cu~0粒径较小,催化活性较高。  相似文献   

5.
《应用化工》2022,(4):663-667
采用室温固相研磨法制备原位还原Cu/ZnO催化剂,并将其用于CO_2加氢合成甲醇反应。利用XRD、BET、TG-DTG等手段对催化剂性能进行了表征,利用高压固定床反应装置对催化剂活性进行了评价,考察了甲酸用量、焙烧温度及升温速率等条件对催化剂性能的影响。结果表明,室温固相研磨得到的前驱体在N_2中焙烧,前驱体氧化分解和还原活化一步完成,无需外加H_2还原,直接制得了原位还原Cu/ZnO催化剂。随甲酸用量、焙烧温度、升温速率增加,催化活性呈现先增加后减小趋势。Cu/Zn摩尔比为1∶1和HCOOH/(Cu+Zn)摩尔比11∶1,前驱体于N_2中焙烧温度573 K和升温速率3 K/min时,制得的原位还原Cu/ZnO催化剂在CO_2加氢合成甲醇反应中呈现最佳活性,CO_2转化率和甲醇产率分别达到了33.44%和28.17%。与空气中焙烧再外加5%H_2还原的Cu/ZnO催化剂相比,原位还原Cu/ZnO催化剂比表面积较高,Cu0粒径较小,催化活性较高。  相似文献   

6.
考察了活性焦载体制备条件和性质对V2O5/AC催化剂选择催化还原NO的影响.结果表明,活性焦载体的表面积较大有利于 V2O5/AC催化剂的 SCR活性,但活性焦中的炭对 V2O5/AC活性也有重要的影响.SO2的存在对V2O5/AC催化剂活性有显著的促进作用,但这与活性焦载体的活化条件和性质无关.  相似文献   

7.
径向流动甲醇合成反应器的数学模型与优化设计   总被引:1,自引:0,他引:1  
以CO、CO2加氢合成甲醇平行反应为独立反应,CO和CO2为关键组分,建立了径向流动甲醇合成反应器的一维非均相数学模型,描述气相和催化剂颗粒表面气体组成、温度随径向距离的分布。  相似文献   

8.
用硝酸铜氨溶液浸渍硅胶制备了甲醇脱氢制甲醛催化剂CuO/SiO2,考察了铜源、pH值、铜负载量和助剂Cr对催化活性的影响.TPR和XRD研究表明,CuO/SiO2中起催化活性作用的主要是分散态CuO,而聚集态CuO增多会导致甲醛选择性下降,助剂Cr能明显提高CuO/SiO2的催化活性和抗还原能力.  相似文献   

9.
研究了以固体超强酸T:O_2/SO_4 ̄(2-)为催化剂,水杨酸和乙醇为原料合成水杨酸乙酯,并考察了醇酸比、催化剂用量、反应时间、反应温度对酯产率的影响。结果表明,在水杨酸用量为0.1mol的情况下用固体超强酸T:O_2/SO_4 ̄(2-)为催化剂,催化剂用量为1.0克,乙醇与水杨酸的摩尔比为3:1或4:1,反应时间为5小时,反应温度95一100℃是最适宜的反应条件,酯产率达89%。并且同硫酸相比,固体超强酸T:O_2/SO_4 ̄(2-)有许多优点:产品容易从催化剂中分离,后处理方便,减少废液,降低动力消耗,具有很好的经济性。  相似文献   

10.
先锋褐煤CO/H2O超临界萃取研究   总被引:1,自引:0,他引:1  
在不同CO初压、不同催化剂作用下,以CO/H2O为溶剂对云南先锋褐煤进行超临界萃取,对萃取物的族组成进行了^1H,^13C-NMR分析。结果表明:萃取产率和转化率随CO初压增大而增加;CO和H2O可发生变换反应生成中间态活泼氢,从而具有较哟的供氢能力,使萃取产率和转化率提高;碱金属的氢氧化物及碳酸盐对CO/H2O变换反应有较强的催化作用;萃取物的油组分以单环芳香结构为主,具有较高的H/C比和较多的  相似文献   

11.
A series of alumina-supported nickel catalysts were prepared by calcination of the catalyst precursors in air at different temperatures. The increase in the intensity of Ni-Al2O3 interactions with the calcination temperature was found to be unfavourable to the reduction of the catalyst, and thus caused a decrease in activity for the low temperature reaction between methane and carbon dioxide. However, the catalyst with strong Ni-Al2O3 interactions suppressed carbon deposition effectively, which can be attributed to the formation of spinel, NiAl2O4, after calcination. When the reaction was carried out at 1023 K, all the catalysts tended to exhibit the same activity. At the same time, only filamentous carbon with a hollow inner channel was observed and there were nickel particles on the tip of this filamentous carbon.  相似文献   

12.
Monte Carlo模拟(GCMC)研究了CO2和CH4在活性炭中的吸附情况。氢气和二氧化碳分子被模拟作Ken-nard-Jones球体,活性炭用一个裂缝气孔模型代替。研究了压力、温度、孔径活性炭对CO2(以CH4为基准)的选择性的影响。结果表明,低压、低温、孔径越小,选择性越大,即对分离CO2和CH4有利;233 K、孔径为2.29 nm以及低压下选择性达到10,此时分离效果较好。  相似文献   

13.
High pressure experimental data are presented on the phase equilibrium of ethylene glycol dimethacrylate in supercritical carbon dioxide. Pressure-composition (P-x) isotherms were measured in static method at five temperatures of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 22.0MPa. This (carbon dioxide+ethylene glycol dimethacrylate) system has continuous critical mixture curves that exhibit maximums in pressure at temperatures between the critical temperatures of carbon dioxide and ethylene glycol dimethacrylate. At a fixed pressure, the solubility of ethylene glycol dimethacrylate for the (carbon dioxide+ethylene glycol dimethacrylate) system increases with increasing temperature. The (carbon dioxide+ethylene glycol dimethacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide+ethylene glycol dimethacrylate) system is correlated with Peng-Robinson equation of state using mixing rule including two adjustable parameters. The critical property of ethylene glycol dimethacrylate is predicted with Joback and Lee-Kesler method.  相似文献   

14.
在200 mL高压萃取釜内,对含夹带剂的超临界CO2萃取回收SBA-15中有机模板剂P123(EO20PO70EO20)的最佳工艺条件进行了研究,考察了夹带剂种类、萃取温度、萃取压力、夹带剂流量对回收率的影响,确定最佳萃取工艺条件为:甲醇作夹带剂,温度45℃,压力27 MPa,夹带剂流量4 mL/min,萃取时间1.5 h,在此条件下P123回收率可达73.7%. 对不同方法脱除P123后的SBA-15进行了表征,结果表明,含甲醇夹带剂的超临界CO2萃取法是一种高效环保的方法,且得到的SBA-15保留了很好的骨架有序性,不会造成骨架硅羟基脱除,克服了高温焙烧脱除模板剂造成的孔道收缩问题.  相似文献   

15.
The Canadian regulations on carbon dioxide emissions from power plants aim to lower the emissions from coal-fired units down to those of natural gas combined cycle (NGCC) units. Since coal is significantly more carbon intensive than natural gas, coal-fired plants must operate at higher net efficiencies and implement carbon capture to meet the new regulations. Calcium looping (CaL) is a promising post-combustion carbon capture (PCC) technology that, unlike other capture processes, generates additional power. By capturing carbon dioxide at elevated temperatures, the energy penalty that carbon capture technologies inherently impose on power plant efficiencies is significantly reduced. In this work, the CO2 capture performance of a calcium-based sorbent is determined via thermogravimetric analysis under relatively high carbonation and low calcination temperatures. The results are used in an aspenONE™ simulation of a CaL process applied to a pressurized fluidized bed combustion (PFBC) system at thermodynamic equilibrium. The combustion of both natural gas and coal are considered for sorbent calcination in the CaL process. A sensitivity analysis on several process parameters, including sorbent feed rate and carbonator operating pressure, is undertaken. The energy penalty associated with the capture process ranges from 6.8–11.8 percentage points depending on fuel selection and operating conditions. The use of natural gas results in lower energy penalties and solids circulation rates, while operating the carbonator at 202 kPa(a) results in the lowest penalties and drops the solids circulations rates to below 1000 kg/s.  相似文献   

16.
The Fe/ZrO2 catalyst (1% Fe by weight) shows a strong adsorption capacity toward the nitric oxide (at room temperature the ratio NOFe is ca. 0.5) as a consequence of the formation of a highly dispersed iron phase after reduction at 500–773 K. Nitric oxide is adsorbed mainly as nitrosyl species on the reduced surface where the Fe2+ sites are prevailing, but it is easily oxidised by oxygen forming nitrito and nitrato species adsorbed on the support. However, in the presence of a reducing gas such as hydrogen, carbon monoxide, propane and ammonia at 473–573 K the Fe-nitrosyl species react producing nitrogen, nitrous oxide, carbon dioxide and water, as detected by FTIR and mass spectrometers. The results show that nitric oxide reduction is more facile with hydrogen containing molecules than with CO, probably due the co-operation of spillover effects. Experiments carried out with the same gases in the presence of oxygen show, however, a reduced dissociative activity of the surface iron sites toward the species NOχ formed by NO oxidation and therefore the reactivity is shifted to higher temperatures.  相似文献   

17.
This study examines the effects of pressure, temperature and solvent to solid ratio (SSR) on extraction efficiency of triglycerides from powdered Jatropha seeds by using supercritical carbon dioxide extraction. Supercritical extractions were designed for pressures ranging from 250 to 350 bar, temperatures ranging from 313 to 333 K and SSR values ranging from 65:1 to 125:1. All values were selected using response surface methodology in order to determine their effects on the concentration of triglycerides from the extracted oil. Using 3750 g of carbon dioxide over 5 h, a supercritical carbon dioxide extraction (at 350 bar, 333 K and an SSR value of 125:1) yielded 43.51% oil. The concentration and extraction efficiency (i.e. recovery) of triglycerides in the extract reached 657.1 mg/g and 97.62%, respectively. Changes in pressure presented more effective in increasing the recovery of triglycerides, but both temperature and the SSR value are important in obtaining high concentration of triglycerides from the Jatropha seeds that are useful for biodiesel materials.  相似文献   

18.
Supported Rh catalysts on FSM-16 were prepared by treating FSM-16, impregnated with [Rh(OAc)2]2 in supercritical carbon dioxide at 398 K and 30.3 MPa, followed by calcination and hydrogen reduction. The resulting Rh/FSM-16 catalysts were characterized by CO chemisorption, XRD, TEM, FTIR and EXAFS, and catalytic performances of the Rh/FSM-16 were tested in butane hydrogenolysis reaction. It is demonstrated that highly dispersed Rh particles are obtained by the supercritical CO2 treatment. In the hydrogenolysis reactions, the supercritical CO2-treated catalyst showed higher conversions and ethane formation.  相似文献   

19.
Phase equilibrium data of carbon dioxide in the ionic liquid 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]) are presented at high pressures up to about 30 MPa and at temperatures between 298.15 K and 343.15 K. The solubilities at a given temperature were determined by measuring the bubble point pressure of the ionic liquid solution with carbon dioxide dissolved using the high-pressure equilibrium apparatus equipped with a variable-volume view cell. Solubility results are reported for carbon dioxide concentrations ranging from 0.21 up to 0.80 mole fraction. Carbon dioxide gave very high solubilities in the ionic liquid at lower pressures, while the equilibrium pressure increased very steeply at higher concentrations of carbon dioxide. The solubility of carbon dioxide in the ionic liquid decreased with an increase in temperature.  相似文献   

20.
The influence of the activation temperature on the pore structure of granular activated carbons prepared from rockrose (Cistus ladaniferus L.), extracted previously into petroleum ether, is comparatively studied. The preparation was carried out by pyrolysis of a char in nitrogen and its subsequent activation by carbon dioxide and steam (flow of water controlled to generate the same mol number per minute of water as well as carbon dioxide/nitrogen) at 700-950°C to 40% burn-off. The techniques applied to study the pore structure were: pycnometry (mercury, helium), adsorption (carbon dioxide, 298 K; nitrogen, 77 K), mercury porosimetry and scanning electron microscopy. The preparation by steam activation, especially at 700°C, yields activated carbons showing a total pore volume larger than those prepared by carbon dioxide activation. The pore structures present the greatest differences when the activations are carried out between 700 and 850°C and closer at higher temperatures. At high temperatures, the decrease of differences in pore development caused by carbon dioxide or steam is attributed to an external burn-off. The micropore structure of each activated carbon is mainly formed by wide micropores. At the lowest activation temperatures, especially at 700°C, steam develops the mesoporosity much more than carbon dioxide. At 950°C, a similar reduction of pore volume in the macropore range occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号