首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用共沉淀法成功制得了稀土Eu^3+、Tb^3+掺杂的CaWO4三原色荧光粉体,利用XRD表征产物的晶体结构,研究表明:由于Eu^3+、Tb^3+离子半径与Ca^2+大小相当,稀土掺杂CaWO4的晶体结构并未引起其晶体结构的较大变化。荧光光谱仪测定样品的发光特性,结果表明:纯CaWO4产生430nm波长蓝光,CaWO4:Tb^3+产生543nm波长绿光,而CaWO4:Eu^3+则产生616nm波长红光。  相似文献   

2.
钠钙硅普通玻璃是现在应用最广的一种玻璃,特别是用在建筑物上,研究稀土掺杂钠钙硅玻璃发光性能有实际意义。利用高温熔融法制备了Eu3+掺杂钠钙硅系发光玻璃。测试了不同浓度Eu3+掺杂下钠钙硅系玻璃的激发光谱、发射光谱,分析了Eu3+掺杂浓度对其发光性能的影响,并研究了稀土离子Tb3+、Dy3+的敏化作用对玻璃发光特性的影响。结果表明:在掺杂浓度0.1 mol%~1.0 mol%范围内没发现浓度猝灭现象;Eu3+掺杂钠钙硅玻璃用394 nm(7F0→5L6)激发时主要有5个发射带集中于(5D0→7F0-4)跃迁,对应的发射峰分别为577 nm,590 nm,611 nm,652 nm,702 nm;等摩尔量的Dy3+掺入对玻璃的发光起到敏化作用,Tb3+与Eu3+共掺时,由于Tb3+自身发光分散了激发Eu3+发光的能量从而降低Eu3+特征发射强度。  相似文献   

3.
采用共沉淀法合成了CaWO4:Eu3+和SrWO4:Eu3+荧光粉体.利用荧光光谱仪测定了样品的光谱特性,结果表明,其主要激发波长为393nm和464nm,以393nm为激发波长说明样品能被近紫外光有效激发,并在614nm产生红色荧光;采用XRD分析其物相及晶体结构,发现生成的发光材料的晶型为四方晶系,晶粒均在纳米级,且在焙烧温度为400℃时生成的样品不含杂质,晶粒尺寸较小;扫描电镜显示400℃焙烧温度下生成的发光材料的样品颗粒大小在100~300nm之间,焙烧温度升高时,SrWO4:Eu3+的抗烧结能力弱,样品出现团聚,生成的样品颗粒变大.  相似文献   

4.
采用化学共沉淀法合成YAl3(BO3)4:Ce,Tb绿色硼铝酸盐发光材料,通过X射线衍射(XRD)和光致发光(PL)光谱对其晶体结构和荧光光谱进行研究.测试结果表明:YAl3(BO3)4:Ce,Tb发光材料属于三方晶系、空间群R32,掺入Ce3+,Tb3+离子后晶格结构没有变化;发光材料的发射光谱主峰位于541 nm处的Tb3+的5D4→7F5跃迁峰,Ce3+离子对Tb3+有敏化作用;掺杂的稀土离子配比为Ce:Tb=0.3:0.1,B的掺杂量为25%,在1 100℃下、高温烧结2h的样品的荧光强度最好.  相似文献   

5.
采用高温固相法合成Mg2-xSnO4∶Eu3+x系列橙红色发光粉.用X射线衍射分析测定Mg2-xSnO4∶Eu3+x荧光粉的晶体结构,用F-4600荧光分光光度计测定其激发光谱和发射光谱.结果表明:Mg2-xSnO4∶Eu3+x荧光粉属于正交晶系,在250~370 nm是一个很宽的激发峰,它属于O-Eu的电荷迁移带和Eu3+的f-f高能级跃迁吸收.发射光谱由588 nm、595 nm、598 nm、617 nm4个主要发射峰组成,它们分别属于Eu3+的5D0-7F1(588 nm,595 nm,598 nm)和5D0-7F2(617 nm)跃迁,以5D0-7F1跃迁为主.具体研究激活剂Eu3+的掺杂量对Mg2-xSnO4∶Eu3+x发光粉发光性能的影响.结果表明Eu3+的最佳掺杂浓度为7%.  相似文献   

6.
采用高温固相法制备Ce、Eu、Tb、Sm单双激活CaO-B2O3-CaCl2(CBC)的系列荧光材料,研究它们的光谱和Stokes位移.Eu、Tb单掺杂的发光体分别在468 nm和550 nm处有蓝光和绿光发射,但是Eu、Tb的猝灭浓度较大.双掺杂Ce/Tb、Sm/Eu的发射光谱分别归属Eu2 的4f65d1→8S7/2和Tb3 的5D4→7F5特征跃迁发射.在CBC中,Ce、Sm分别是Tb、Eu的高效敏化剂,双掺Ce/Tb和Sm/Eu的荧光体发光强度比单掺Tb、Eu提高4~12倍,产品成本降低了25%~35%.  相似文献   

7.
用高温熔融法制备了Eu2O3单掺和Ce/Tb/Eu三元共掺杂的CaO-B2O3-SiO2(CBS)发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其结构以及发光特性进行了研究.光谱分析结果表明:在394nm激发下,Eu2O3单掺杂的CBS发光玻璃的发射光谱中出现了Eu3+的特征发射峰.这些发射峰主要起源于Eu3+中的4f电子的f-f跃迁;在374nm激发下,三元共掺杂发光玻璃的发射光谱中同时观测到了起源于Ce3+、Tb3+和Eu3+的蓝色、绿色和红色的三基色发射,这些发射可进一步混合成为白光发射.此外,Ce/Tb/Eu三元共掺杂发光玻璃的发光颜色,随着Eu2O3含量的增加从蓝光逐渐过渡到白光,这显示出了发光颜色的可调节性,极大地扩展了其在白光发光领域中的应用.  相似文献   

8.
以β-丙氨酸和尿素为燃料,采用溶液燃烧法在低温450℃下合成制备了Ca3Al2O6:Eu3+荧光粉。样品的发射光谱由位于594 nm、617 nm、653 nm及700 nm处的4组线状峰构成,分别对应Eu3+的5D0→7Fj(j=1~4)特征跃迁,其中617 nm处的峰最强,样品呈现红色发光。考察了Eu3+掺杂浓度对晶体结构和发光性能的影响。结果呈示:随着掺杂浓度的增加晶格常数逐渐减小,[O—Al—O]的对称伸缩振动Raman峰蓝移;在低掺杂浓度时荧光强度逐渐增大,掺杂6%时达到最大,之后出现浓度猝灭现象,猝灭机制为交互作用;Eu3+的5D0→7F2与5D0→7F1跃迁强度比随着掺杂浓度的增加逐渐增大,掺杂的Eu3+主要取代处于非对称中心的Ca2+。  相似文献   

9.
CaO:Eu3+,Li+红色荧光粉的制备   总被引:1,自引:0,他引:1  
以CaCO3为主要原料,使用湿化学法制备前驱物,在850 ℃高温煅烧前驱物制备CaO:Eu3+,Li+的红色稀土荧光粉.用XRD、SEM、激光粒度、拉曼光谱仪、紫外-可见光谱仪和荧光光谱仪等分别对样品的物相、形貌、粒度和光谱性质进行表征.结果表明,掺杂Eu3+和Li+分别作为激活剂和敏化剂进入CaO的晶格中,同时Li+的掺杂可以促进Eu3+进入CaO晶格,有效地增强了能量在O2-与 Eu3+间的传递,使Eu3+的发光显著增强.晶体颗粒为近球形且粒径在1 μm以内,分布较均匀;样品可以很好地吸收紫外光,在244 nm左右的氙灯激发下,发射波长主要为592 nm,Eu3+离子主要处在严格对称的格位上,属于红色发光.  相似文献   

10.
采用高温固相法结合电荷补偿方式2Sr2+→Eu3+ +Na+,合成了适合白光LED的红色荧光材料NaxSr1-2x MoO4:Eu3+x(x=0.1、0.15、0.2,0.25、0.3)系列样品.对样品分别进行了X射线衍射(XRD)分析和荧光光谱的测定.测试结果表明,NaxSr1-2xMoO4:Eu3+x荧光粉可以被近紫外光(UV)(393 nm)和蓝光(463 nm)有效激发.通过探讨Na+和Eu3+的掺杂浓度对发光强度的影响,得出NaxSr1-2xMoO4:Eu3+x系列样品的发光强度比SrMoO4:Eu3+明显增加,且当掺杂量x=0.2时,NaxSr1-2xMoo4:Eu3+x系列样品在616 nm处的发光强度最大.分析了NaxSr1-2xMoO4:Eu3+x系列样品在380 nm紫外光激发下的色坐标,当Na+和Eu3+的掺杂量x=0.15时,样品的红色显色最强.  相似文献   

11.
O482.31 A摘要:利用高温固相法制备一系列Na33YSi3O9:Ce+,Tb3+荧光粉,通过X-射线衍射仪和光致发光光谱分别对其物相和发光性能进行表征.结果表明:在Na3YSi3O9共掺Ce3+和Tb3+并未改变其晶格结构;激发光谱主要由Tb3+的f-f跃迁以及Ce3+和Tb3+的4f-5d跃迁组成;在320 nm激发下,发射光谱出现Tb3+的f-f和弱Ce3+的5d-4f跃迁发射,其主峰来自于Tb3+的5D4→7F5跃迁;色坐标为(0.2402,0.4429);由于Ce3+对Tb3+的敏化作用和浓度猝灭,Tb3+的发射强度随着Tb3+或Ce3+掺杂量的增加先提高后减弱.Ce3+和Tb3+的最佳掺杂量分别为0.04和0.25.  相似文献   

12.
采用高温固相法合成了Ba3P4O13:Ce3+,Tb3+荧光粉.研究了单掺Ce3+、单掺Tb3+以及Ce3+、Tb3+共掺杂时的光谱性质.发现Ce3+的激发光谱呈宽带峰,发射光谱有两个峰,且两者重叠严重,用高斯双峰拟合得到峰值为340 nm和363 nm的发射峰.Tb3+的激发光谱中以220 nm的激发峰最强,测得发射光谱为5D3、5D4能级的发射,表明在此体系中能级5D3和5D4间的无辐射跃迁过程不显著.通过Ce3+、Tb3+共掺,Tb3+的荧光发射明显增强.  相似文献   

13.
采用sol-gel法制备了掺杂不同浓度的稀土La3+、Dy3+离子的纳米BaTiO3粉体样品.通过XRD表征分析了样品的粒度和晶体结构,并通过电容法研究了样品的介电常数及介电损耗因子.研究结果表明,在900℃焙烧2h制备的稀土掺杂纳米BaTiO3:RE3+(RE=La,Dy),粉体的平均粒径在20~40nm之间,比在相同工艺条件下制备的纯纳米BaTiO3粉体的平均粒径明显变小,室温介电常数明显增高.随着稀土离子浓度的增加,纳米BaTiO3:RE3+粉体粒径减小,晶体结构由四方相向立方相转变,其介电常数也随之提高.  相似文献   

14.
利用共沉淀方法制备了ZrO2:Eu3+荧光粉体,研究了不同煅烧温度和掺杂浓度对样品结构和发光性质的影响. 在不同煅烧温度和掺杂浓度下,样品结构含有单斜相和四方相2种不同结构,其比例不同. 在不同温度下,监测615 nm的激发光谱发现:基质ZrO2和Eu3+之间存在能量传递,当样品结构为单斜相时,能量传递最强;研究激发波长为243 nm的发射光谱可知:晶面结构不同可以引起Eu3+特征发射光谱的变化. 研究荧光强度与激活离子Eu3+浓度关系发现:荧光强度先随浓度提高而提高,在浓度为4 mol%时达到最大,然后又随之降低.  相似文献   

15.
以硝酸铈、硝酸锶、尿素为原料,采用燃烧法制备了Pr3+掺杂Sr2CeO4:Eu3+新型发光材料,实验结果表明,当焙烧温度为1 000℃,掺杂1%Pr3+时,制备的样品为单相Sr2CeO4斜方晶系结构,晶粒尺寸为15.7nm,激发和发射光谱分别为293nm和420~550nm的宽带峰,与Sr2CeO4:Eu3+相比,掺杂Pr3+的样品的发光强度有了明显的提高,发光寿命明显增强.  相似文献   

16.
采用高温熔融法,将Eu3+掺杂的P2O5-Ba O-Na2O-K2O-Y2O3系统玻璃,在不同的温度下进行热处理,制备出Eu3+:YPO4的微晶玻璃.利用X射线衍射仪、扫描电子显微镜、荧光光谱仪等对微晶玻璃样品的晶相、微观形貌和光谱性能进行测试、研究.结果表明:基础玻璃在750℃热处理1 h可以得到纯相的Eu3+:YPO4的微晶玻璃,该微晶玻璃在225 nm波长的激发下,位于594 nm处Eu3+的5D0—7F1跃迁发射最强,并随着热处理温度的升高,微晶玻璃的发光强度逐渐增强.  相似文献   

17.
掺钡白钨矿型CaWO4:Ba2+荧光材料的制备与表征   总被引:1,自引:0,他引:1  
以氯化钙、氯化钡和硝酸钠为原料,采用沉淀法制备出纯CaWO4、BaWO4粉体,采用固相反应法制备出CaWO4:Ba2+(CaxBa1-xWO4)粉体,研究了钡离子的掺杂量对CaWO4:Ba2+荧光材料的发光性能的影响.通过XRD、FT-IR对样品的晶体尺寸进行表征,以及PL分析了样品的发光特性.研究结果表明:掺杂后钨酸盐中的晶胞参数随Ba2+的掺杂量增加而增大,且晶体结构中WO2-4四面体构型发生畸变;钨酸钙的在370 cm-1、430 cm-1附近有明显发光,当钡离子掺入量较低时,CaWO4:Ba2+的发光强度增加,但当钡离子掺入量增加时,发光强度却下降.  相似文献   

18.
氟磷酸盐玻璃具有声子能量低、离子键性强、稀土离子掺杂浓度高、发光效率高等优点.采用正交设计法确定氟磷酸盐玻璃的配方为44KH2PO4-40AlF3·3.5H2O-10BaF2-0.1Nb2O5,并采用该配方为基质制备了稀土Ho3+、TM3+掺杂的氟磷酸盐玻璃,通过差热分析研究了该玻璃的形成过程;研究了Ho3+、TM3+的掺杂量和Ho3+、TM3+在该玻璃中的能级结构,测试了玻璃样品的吸收光谱,结果表明稀土掺杂的样品在416 nm、448 nm、537 nm、641 nm、684 nm、791 nm和1 035 nm处有明显的吸收峰,当稀土离子Ho3+、TM3+的掺杂量为0.3mol%和1.5mol%时,稀土离子的特征吸收相对最强.  相似文献   

19.
采用高温固相法合成了Tb3+掺杂和Tb3+/Ce3+共掺Ca3(BO3)2荧光粉.研究比较了两者的光谱特性,发现Tb3+在273 nm、373 nm处有2个激发峰,发射光谱反映了Tb3+的特征发射,即能观察到来自5D3和5D4的发射.Tb3+/Ce3+共掺时的激发光谱在273nm、373nm处有2个激发带,但以273nm为主,发射光谱中除了明显的Tb3+外亦能观察到Ce3+的发射谱线.在相同条件下比较两者的发射光谱可以看出共掺时的能量明显增强,说明Tb3+/Ce3+之间存在能量转移.对两种荧光粉样品进行了寿命测试和比较,发现共掺时的寿命有所增强,表明Ce3+在能量转移的过程中对寿命也有一定的影响.  相似文献   

20.
利用水热法在低温下制备了CaMoO4:Eu3+发光材料,考察了不同稀土掺杂浓度等条件对产物性能的影响,并利用X-射线衍射(XRD)、场发射扫描电子显微镜(SEM)、荧光光谱(PL)等手段对样品的微观结构和光谱性能进行了表征。结果表明:160℃下水热法制备的CaMoO4为纳米颗粒组装成的球状结构;当Eu3+掺杂质量分数为9%时,CaMoO4:Eu3+荧光粉呈现出2条较强发射峰,其中在615nm处的发光强度最强,红橙比(R/O)为6.5/1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号