首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable sample size and sampling interval (VSSI) charts are substantially more efficient than are the static charts. However, the frequent switches between sample sizes and sampling interval lengths can be a complicating factor during the implementation of these charts. In this article, runs rules are proposed for switching between the sample sizes and the sampling interval lengths of these charts to reduce the frequency of switches. The expressions for the performance measures for the charts with these runs rules are developed. The methods presented are general and can be applied to other VSSI Shewhart control charts. The effects of different runs rules on the performances of the charts are compared numerically. The runs rules substantially reduce the frequency of switches. Some runs rules do not significantly alter the statistical performances of the charts; however, some adversely affect that in detecting large shifts in the process mean. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The standard deviation chart (S chart) is used to monitor process variability. This paper proposes an upper‐sided improved variable sample size and sampling interval (VSSIt) S chart by improving the existing upper‐sided variable sample size and sampling interval (VSSI) S chart through the inclusion of an additional sampling interval. The optimal designs of the VSSIt S chart together with the competing charts under consideration, such as the VSSI S and exponentially weighted moving average (EWMA) S charts, by minimizing the out‐of‐control average time to signal (ATS1) and expected average time to signal (EATS1) criteria, are performed using the MATLAB programs. The performances of the standard S, VSSI S, EWMA S, and VSSIt S charts are compared, in terms of the ATS1 and EATS1 criteria, where the results show that the VSSIt S chart surpasses the other charts in detecting moderate and large shifts, while the EWMA S is the best performing chart in detecting small shifts. An illustrative example is given to explain the implementation of the VSSIt S chart.  相似文献   

3.
In this article, two adaptive multivariate charts, which combine the double sampling (DS) and variable sampling interval (VSI) features, called the adaptive multivariate double sampling variable sampling interval T2 (AMDSVSI T2) and the adaptive multivariate double sampling variable sampling interval combined T2 (AMDSVSIC T2) charts, are proposed. The real purpose of using the proposed charts is to provide flexibility by enabling the sampling interval length of the DS T2 chart to be varied so that the chart's sensitivity can be enhanced. The fundamental difference between the two proposed charts is that when a second sample is taken, the AMDSVSI T2 chart uses the information of the combined sample mean vectors while the AMDSVSIC T2 chart uses the information of the combined T2 statistics, in deciding about the process status. This research is motivated by existing combined DS and VSI charts in the literature, which show convincing performance improvement over the standard DS chart. Consequently, it is believed that adopting this existing approach in the multivariate case will enable superior multivariate DS charts to be proposed. Numerical results show that the proposed charts outperform the existing standard T2 and other adaptive multivariate charts, in detecting shifts in the mean vector, for the zero‐state and steady‐state cases. The performances of both charts when the shift sizes in the mean vector are unknown are also measured. The application of the AMDSVSI T2 chart is illustrated with an example.  相似文献   

4.
The notion of variable warning limits is proposed for variable sample size and sampling interval (VSSI) charts. The basic purpose is to lower down the frequency of switches between the pairs of values of the sample sizes and sampling interval lengths of VSSI charts during their implementations. Expressions for performance measures for the variable sample size, sampling interval, and warning limits (VSSIWL) charts are developed. The performances of these charts are compared numerically with that of VSSI and VSSI (1, 3) charts, where VSSI (1, 3) charts are the VSSI charts with runs rule (1, 3) for switching between the pairs of values of sample sizes and sampling interval lengths. Runs rule (1, 3) greatly reduces the frequency of the switches; however, it slightly worsens the statistical performances of the VSSI charts in detecting moderate shifts in the process mean. It is observed that the out‐of‐control statistical performance and overall switching rate of VSSIWL charts are adaptive for the same in‐control statistical performances. These charts can be set to yield exactly similar performances as that of VSSI (1, 3) charts, to yield tradeoff performances between that of VSSI (1, 3) and VSSI charts, or to yield significantly lower switching rate than even that of VSSI (1, 3) charts at the cost of slightly inferior statistical performances than that of VSSI (1, 3) charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Recent research has shown that the adaptive control charts are quicker than the traditional static charts in detecting process shifts. This paper develops the algorithm for the optimization designs of the adaptive np control charts for monitoring the process fraction non‐conforming p. It includes the variable sample size chart, the variable sampling interval chart, and the variable sample size and sampling interval chart. The performance of the adaptive np charts is measured by the average time to signal under the steady‐state mode, which allows the shift in p to occur at any time, even during the sampling inspection. By studying the performance of the adaptive np charts systematically, it is found that they do improve effectiveness significantly, especially for detecting small or moderate process shifts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The CRL (Conforming Run Length) type control charts have attracted increasing interest recently for attribute Statistical Process Control (SPC). The two most promising charts of this type are identified as the CRL‐CUSUM chart and the SCRL (Sum of CRLs) chart. This article compares the operating characteristics of these two charts in a comprehensive manner. The general findings reveal that the CRL‐CUSUM chart excels the SCRL chart in detecting downward (decreasing) fraction nonconforming (p) shifts and large‐scale upward (increasing) p shifts. However, the SCRL chart is superior to the CRL‐CUSUM chart in detecting the small and moderate scale upward p shifts, especially when the normal p value is small. The information acquired in this study will provide Quality Assurance (QA) engineers with useful guidance for selecting and applying the CRL‐type control charts. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
The cumulative sum (CUSUM) chart is a very effective control charting procedure used for the quick detection of small‐sized and moderate‐sized changes. It can detect small process shifts missed by the Shewhart‐type control chart, which is sensitive mainly to large shifts. To further enhance the sensitivity of the CUSUM control chart at detecting very small process disturbances, this article presents CUSUM control charts based on well‐structured sampling procedures, double ranked set sampling, median‐double ranked set sampling, and double‐median ranked set sampling. These sampling techniques significantly improve the overall performance of the CUSUM chart over the entire process mean shift range, without increasing the false alarm rate. The newly developed control schemes do not only dominate most of the existing charts but are also easy to design and implement as illustrated through an application example of real datasets. The control schemes used for comparison in this study include the conventional CUSUM chart, a fast initial response CUSUM chart, a 2‐CUSUM chart, a 3‐CUSUM chart, a runs rules‐based CUSUM chart, the enhanced adaptive CUSUM chart, the CUSUM chart based on ranked set sampling (RSS), and the single CUSUM and combined Shewhart–CUSUM charts based on median RSS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
CCC‐r charts are effective in detecting process shifts in the nonconforming rate especially for a high‐quality process. The implementation of the CCC‐r charts is usually under the assumption that the in‐control nonconforming rate is known. However, the nonconforming rate is never known, and accurate estimation is difficult. We investigate the effect of estimation error on the CCC‐r charts' performances through the expected value of the average number of observations to signal (EANOS) as well as the standard deviation of the average number of observations to signal (SDANOS). By comparing the in‐control performance of the CCC‐r charts, the CCC‐r chart with a larger value of r is more susceptible to the effects of parameter estimation. Meanwhile, the performance of the CCC‐r charts can converge when detecting upward shifts in p of out‐of‐control processes. We recommend the use of the CCC‐4 chart when considering its effectiveness in detecting shifts as well as its easier construction in practice. Furthermore, it is investigated that the CCC‐4 chart is less sensitive to parameter estimation while being more effective in detecting different process shifts when compared with Geometric CUSUM chart and synthetic chart.  相似文献   

11.
In recent years several studies have shown that the X chart with variable sampling intervals (VSI), the X chart with variable size (VSS), the X chart with variable sample size and sampling intervals (VSSI) and the X chart with variable parameters (VP) detect both small and moderate shifts in the process mean more quickly than the traditional Shewhart X chart. Double sampling is the counterpart to double sampling plans. A combined double sampling variable sampling interval (DSVSI) X chart is studied in this paper. It is compared with the aforementioned charts and with the CUSUM and EWMA charts. In all cases, the DSVSI X chart is quicker at detecting small and moderate shifts in the process mean. An example is provided.  相似文献   

12.
The AEWMA control chart is an adaptive EWMA (exponentially weighted moving average) type chart that combines the Shewhart and the classical EWMA schemes in a smooth way. To improve the detection performance of the FSI (fixed sampling interval) AEWMA control chart 7 in terms of the ATS(average time to signal), this paper proposes a new VSI (variable sampling interval) AEWMA control chart. A Markov chain approach is used to calculate the ATS values of the new VSI AEWMA control chart, and comparative results show that the proposed control chart performs better than the standard FSI AEWMA control chart and than other VSI control charts over a wide range of shifts.  相似文献   

13.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Control charts are extensively used in processes and are very helpful in determining the special cause variations so that a timely action may be taken to eliminate them. One of the charting procedures is the Shewhart‐type control charts, which are used mainly to detect large shifts. Two alternatives to the Shewhart‐type control charts are the cumulative (CUSUM) control charts and the exponentially weighted moving average (EWMA) control charts that are specially designed to detect small and moderately sustained changes in quality. Enhancing the ability of design structures of control charts is always desirable and one may do it in different ways. In this article, we propose two runs rules schemes to be applied on EWMA control charts and evaluate their performance in terms of the Average Run Length (ARL). Comparisons of the proposed schemes are made with some existing representative CUSUM and EWMA‐type counterparts used for small and moderate shifts, including the classical EWMA, the classical CUSUM, the fast initial response CUSUM and EWMA, the weighted CUSUM, the double CUSUM, the distribution‐free CUSUM and the runs rules schemes‐based CUSUM. The findings of the study reveal that the proposed schemes are able to perform better than all the other schemes under investigation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We investigate in this paper a new type of control chart called VSI EWMA‐RZ by integrating the variable sampling interval feature (VSI) with the exponentially weighted moving average (EWMA) scheme to monitor the ratio of two normal random variables. Because the distribution of the ratio is skewed, we suggest designing two separated one‐sided charts instead of one two‐sided chart. A new coefficient is introduced allowing us to be free to choose a sampling interval provided that it optimizes the performance of the control chart. We also make a direct comparison between the VSI EWMA‐RZ charts and standard EWMA‐RZ control charts. The numerical simulations show that the proposed charts outperform the standard EWMA charts in detecting process shifts. An application is illustrated for the implementation of the VSI EWMA‐RZ control charts in the food industry.  相似文献   

16.
Recent studies demonstrated that the adaptive X? control charts are more efficient than fixed parmeters (FP) X? control chart from statistical and economic criteria. The usual assumption for designing a control chart is that the observations from the process are independent. However, for many processes, such as chemical processes, consecutive measurements are often highly correlated, especially when the interval between samples is small. In the present paper, the observations are modeled as an AR(1) process plus a random error, and the properties of the variable sampling rate (VSR) X? charts are evaluated and studied under this model. Based on the study, the VSR X? chart is faster than the FP, variable sampling interval and variable sample size X? control charts in detecting mean shifts. However, when the level of autocorrelation is high or the process mean shift is large, the advantage of the VSR X? chart is reduced. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The variable sampling interval exponentially weighted moving average median chart with estimated process parameters is proposed. The charting statistic, optimal design, performance evaluation, and implementation of the proposed chart are discussed. The average of the average time to signal (AATS) criterion is adopted to evaluate the performance of the proposed chart. The estimated process parameter‐based VSI EWMA median (VSI EWMA median‐e) chart is compared with the estimated process parameter‐based Shewhart median (SH median‐e), EWMA median (EWMA median‐e), and variable sampling interval run sum median (VSI RS median‐e) charts, in terms of the AATS criterion, where the VSI EWMA median‐e chart is shown to be superior. When process parameters are estimated, the standard deviation of the average time to signal (SDATS) criterion is used to evaluate the AATS performance of the VSI EWMA median‐e chart. Based on the SDATS criterion, the minimum number of phase‐I samples required by the VSI EWMA median‐e chart so that its performance is close to the known process parameters VSI EWMA median chart is recommended.  相似文献   

18.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Control charts are widely used for process monitoring and quality control in manufacturing industries. Implementing variable sampling interval (VSI) control schemes on control charts rather than traditional fixed sampling interval procedure can significantly improve the control chart's efficiency. In this paper, the VSI run sum (RS) Hotelling's χ2 chart is proposed. The optimal scores and parameters of the proposed chart are determined using an optimization technique to minimize the following: (i) out‐of‐control average time to signal (ATS); (ii) adjusted ATS (AATS), when the exact shift size can be specified; (iii) expected ATS; or (iv) expected AATS, when the exact shift size cannot be specified. The Markov chain method is used to evaluate the zero‐state ATS and expected ATS, and steady‐state AATS and expected AATS of the proposed chart. The results show that the VSI RS Hotelling's χ2 chart significantly outperforms the standard RS Hotelling's χ2 chart and the former also performs well compared with other competing charts. By adding more scoring regions, the efficiency of the VSI RS Hotelling's χ2 chart can be further enhanced. An illustrative example using data from a manufacturing process is presented to demonstrate the application of the VSI RS Hotelling's χ2 chart. The application of the proposed chart in a quality improvement program can be extended to management and service industries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号