首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of polyethylene‐grafted maleic anhydride as a compatibilizer on the tensile properties of (high‐density polyethylene)/(natural rubber)/(thermoplastic tapioca starch) (HDPE/NR/TPS) blends were investigated. The ratio of HDPE/NR was fixed at 70/30, and these materials were blended with TPS in concentrations varying from 5 to 30% by using a Haake Rheomix 600 mixer. Two series of HDPE/NR/TPS blends were prepared, i.e., with and without compatibilizer. Morphology and tensile properties of the HDPE/NR/TPS blends were evaluated as a function of TPS loading. The tensile strength and elongation at break decreased with the increase of TPS content. However, an improvement in the tensile strength was obtained for compatibilized blends as compared to uncompatibilized blends. The degrees of TPS adhesion and dispersion in HDPE/NR blends were revealed by scanning electron microscopy (SEM). Results showed that a smaller‐sized dispersed phase was achieved for compatibilized blends as compared to that for their uncompatibilized counterparts. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Biocomposites were prepared from a kenaf core powder and recycled high‐density polyethylene/(natural rubber) blend by using an internal mixer at 165oC and 50 rpm. The effect of the filler content and the filler surface treatment was studied. Chemical modification of kenaf filler was performed with alkali pretreatment followed by treatment with silane. Scanning electron microscopy and infrared spectroscopy studies confirmed changes in the chemical compositions and structural characteristics induced through the modification. It was found that treated biocomposites offered higher tensile strength and tensile modulus, but lower elongation at break compared with untreated biocomposites. Lower water absorption and higher thermal stability of the resultant biocomposites were also obtained when treated fillers were used. J. VINYL ADDIT. TECHNOL., 20:218–224, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
High‐density polyethylene/natural rubber (HDPE/NR) blends filled thermoplastic tapioca starch was studied. In this blend system, thermoplastic starch (TPS) acted as an inert component, and the influence of TPS incorporation was studied in terms of tensile properties and crystallization kinetics. Tensile properties of the blends were affected by the addition of TPS particles, which reflects the incompatibility and lack of adhesion at the interface. The effect of TPS incorporation on the crystallization behavior of the HDPE/NR blends was also evaluated at different predetermined crystallization temperatures. The isothermal crystallization data obtained in this study were analyzed by using the Avrami equation. The Avrami exponent for HDPE/NR and HDPE/NR‐10% TPS blends varied around 2.0 and slightly decreased around 1.8 for HDPE/NR‐30% TPS, implying the nucleation process is heterogeneous and the crystal growth is 2D. J. VINYL ADDIT. TECHNOL., 22:191–199, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
In this work, blends of fluoroelastomer (FKM), natural rubber (NR) along with high‐density polyethylene (HDPE) by dynamic vulcanization using peroxide (DBPH, DCP) as a curing agent were prepared. HDPE was melt‐mixed with NR and FKM at different compositions (HDPE/FKM/NR i.e. 30/60/10, 30/55/15, 30/50/20, and 30/35/35%wt) using an internal mixer at 150°C and 50 rpm rotor speed. The mechanical properties and oil swelling resistances of these blends were analyzed according to ISO 37 (Type 1) and ASTM D471, respectively. The results suggest that DBPH works better as a curing agent for the dynamic vulcanization system than DCP. The optimum mechanical properties and oil resistance were revealed in 30/50/20 and 30/60/10 HDPE/FKM/NR, being dynamic vulcanized with DBPH, respectively. In addition, was found that a dispersed HDPE phase shows the percent crystallinity in the range of 53% to 55% upon increasing the NR content. The SEM micrographs reveal the NR phase is well dispersed in FKM as small particles. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers .  相似文献   

5.
The effect of citric acid on the tensile properties of high density polyethylene (HDPE)/natural rubber (NR)/thermoplastic tapioca starch (TPS) blends was investigated. The ratio between HDPE/NR was fixed at 70/30 and used as the matrix system. TPS loadings, after modification with citric acid (TPSCA) and without modification (TPS), were varied from 0 to 30 wt %. The morphologies and tensile properties of HDPE/NR blends were evaluated as a function of TPS loadings. The tensile strength, Young's modulus, and elongation at break were found to decrease with increasing TPS loading. However, a slight improvement in the tensile strength of HDPE/NR/TPSCA blends at 5 and 10 wt % TPS loadings were observed. TPS can be partly depolymerised to produce a low viscosity product when processed with citric acid. TPS with low viscosity can easily disperse in the thermoplastic natural rubber (TPNR) system and reduce the surface tension at the interphase of TPS-HDPE/NR as shown by scanning electron microscopy (SEM). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Thermoplastic elastomers (TPEs) based on dynamically cured epoxidized natural rubber/high‐density polyethylene (ENR/HDPE) blends were prepared. Influence of the process oil, blend proportion, and curing systems were investigated. It was found that the oil‐extended thermoplastic vulcanizates (TPVs) exhibited better elastomeric properties and improved ease of the injection process. Increasing the proportion of ENR caused increasing elastic response of elongation at break, tension set properties, and tan δ. It was also found that the TPV treated with phenolic resin exhibited superior mechanical properties and the smallest vulcanized rubber domains. The TPV treated with the conventional peroxide co‐agent curing system showed superior strength properties but had poor elastomeric properties. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
Epoxidized natural rubber (ENR) with a level of epoxide groups of 20 mol % was prepared via the performic epoxidation method. It was then used to blend with high‐density polyethylene (HDPE) at various blend ratios. Three types of blend compatibilizers were prepared. These included a graft copolymer of HDPE and maleic anhydride (MA; i.e., HDPE‐g‐MA) and two types of phenolic modified HDPEs using phenolic resins SP‐1045 and HRJ‐10518 (i.e., PhSP‐PE and PhHRJ‐PE), respectively. We found that the blend with compatibilizer exhibited superior tensile strength, hardness, and set properties to that of the blend without compatibilizer. The ENR and HDPE interaction via the link of compatibilizer molecules was the polar functional groups of the compatibilizer with the oxirane groups in the ENR molecules. Also, another end of the compatibilizer molecules (i.e., HDPE segments) was compatibilizing with the HDPE molecules in the blend components. The blend with compatibilizer also showed smaller phase morphology than the blend without compatibilizer. Among the three types of the blend compatibilizer, HDPE‐g‐MA provided the blend with the greatest strength and hardness properties but the lowest set properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
A series of low‐density polyethylene (LDPE) blends with varying proportions of plasticized tapioca starch have been used for the study of their mechanical properties. A functionalized epoxy resin, namely, poly(ethylene‐co‐glycidyl methacrylate) has been used as the compatibilizer. The impact and tensile properties have been measured by standard ASTM methods. The mechanical properties are seen to improve significantly with the addition of the epoxy compatibilizer, approaching values close to those of virgin LDPE. The scanning electron micrographs of the compatibilized blends show ductile failure which evidently contribute to improved mechanical properties. © 2001 Society of Chemical Industry  相似文献   

9.
The effect of the blend ratio on the thermal, morphological, and physicomechanical properties of (chlorinated polyethylene rubber)/(chloroprene rubber) (CPE/CR) blends was studied. Two distinct glass transition temperatures (Tg) of all blends were observed in differential scanning calorimetry curves, falling between the Tg of the two pure rubbers. Analysis of the blends by scanning electron microscopy showed both dispersed and continuous phase morphology that depended on the blend composition. Thermogravimetric analysis showed that all the compounds underwent two stages of thermal degradation. The Mooney viscosity and optimum cure times increased with the increase in CPE contents, whereas the scorch times decreased. The tensile strength and elongation at break decreased, whereas the 100% modulus, hardness, and compression set increased with the increase of CPE content; the tear strength had the lowest value for the 50/50 CPE/CR blend because of the poor miscibility. The results from thermal aging and oil resistance tests showed that pure CPE possessed better thermal aging property and oil resistance than those of pure CR. Thus, considerable improvement in oil resistance of the blend compounds was achieved with the increase of CPE content. J. VINYL ADDIT. TECHNOL., 21:18–23, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
The preparation and characterization of CPE (chlorinated polyethylene)/TPU (thermoplastic polyurethane) blends with various ratios were investigated. The compatibility, morphology, and rheology, as well as the thermal and physico‐mechanical properties, were studied by differential scanning calorimetry, Fourier‐transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, universal tensile machine analysis, and capillary rheometry. The results showed that CPE is partially miscible with TPU. The introduction of CPE into TPU resulted in a reduction of the viscosity, tensile strength, tear strength, compression set, abrasion resistance, and hardness, whereas the elongation at break was increased. Thermogravimetric analysis showed that the blends underwent two stages of thermal degradation. J. VINYL ADDIT. TECHNOL., 19:192‐197, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
Aluminum hydroxide, magnesium hydroxide, and 1,2‐bis(pentabromophenyl) ethane were incorporated into high‐density polyethylene (HDPE) and wood flour composites, and their mechanical properties, morphology, and fire‐retardancy performance were characterized. The addition of flame retardants slightly reduced the modulus of elasticity and modulus of rupture of composites. Morphology characterization showed reduced interfacial adhesion among wood flour, HDPE, and flame retardants in the composites compared with control composites (HDPE and wood flour composites without the addition of flame retardants). The flame retardancy of composites was improved with the addition of the flame retardants, magnesium hydroxide and 1,2‐bis(pentabromophenyl) ethane, especially 1,2‐bis(pentabromophenyl) ethane, with a significant decrease in the heat release rate and total heat release. Char residue composition and morphology, analyzed by attenuated total reflectance, Fourier‐transform infrared spectroscopy, and scanning electron microscopy, showed that the char layer was formed on the composite surface with the addition of flame retardants, which promoted the fire performance of composites. The composites with 10 wt% 1,2‐bis(pentabromophenyl) ethane had good fire performance with a continuous and compact char layer on the composite surface. J. VINYL ADDIT. TECHNOL., 24:3–12, 2018. © 2015 Society of Plastics Engineers  相似文献   

12.
The effects of short carbon fibers on static and dynamic properties of thermoplastic elastomeric blends of natural rubber (NR) and high density polyethylene (HDPE) have been studied. Both mechanical and dynamic properties are dependent on fiber concentration. The fiber aspect ratio ranges from 20 to 30. Adhesion between fiber and matrix is evident from the SEM photomicrographs of the failed composites and from variation of relative damping properties. Fiber orientation occurring during processing causes anisotropy in the physical properties. In composites with longitudinally oriented fibers, tensile failure occurs by both fiber pullout and breakage, while in composites with transversely oriented fibers, matrix failure dominates. The incorporation of fibers into the matrix lowers the tan δmax value, but no change in glass transition temperature is observed.  相似文献   

13.
Morphology and rheological properties of low‐density polyethylene/linear low‐density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blends are experimentally investigated and theoretically analyzed using rheological models. Blending of LDPE/LLDPE (70/30 wt/wt) with 5–20 wt % of TPS and 3 wt % of PE‐grafted maleic anhydride (PE‐g‐MA) as a compatibilizer is performed in a twin‐screw extruder. Scanning electron micrographs show a fairly good dispersion of TPS in PE matrices in the presence of PE‐g‐MA. However, as the TPS content increases, the starch particle size increases. X‐ray diffraction patterns exhibit that with increase in TPS content, the intensity of the crystallization peaks slightly decreases and consequently crystal sizes of the blends decrease. The rheological analyses indicate that TPS can increase the elasticity and viscosity of the blends. With increasing the amount of TPS, starch particles interactions intensify and as a result the blend interface become weaker which are confirmed by relaxation time spectra and the prediction results of emulsion Palierne and Gramespacher‐Meissner models. It is demonstrated that there is a better agreement between experimental rheological data and Coran model than the emulsion models. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44719.  相似文献   

14.
Polymer dielectric composites, which possess high dielectric and loss suppression with excellent mechanical properties, are of crucial importance in practical applications. Herein, high‐density polyethylene/nitrile rubber/multiwalled carbon nanotube (HDPE/NBR/MWCNT) composites were fabricated by the dynamic vulcanization (DV) technique. The effect of DV on the structure and properties of HDPE/NBR/MWCNTs was systematically investigated. The results illustrate that the DV technique combines the advantages of the crosslinked phase and melt processability of thermoplastics. With the increase of dicumyl peroxide content, the dielectric permittivity and the mechanical properties clearly increase, due to a better compatibility and dispersibility achieved by DV. More importantly, a continuous decrease of dielectric loss and conductivity are observed with the increase of dicumyl peroxide content. These can probably be assigned to the combination of better dispersion and slower chain mobility of the NBR phase induced by crosslinking. © 2020 Society of Industrial Chemistry  相似文献   

15.
In this study, the mechanical and thermal properties of low‐density polyethylene (LDPE)/thermoplastic tapioca starch blends were determined with LDPE‐g‐dibutyl maleate as the compatibilizer. Mechanical testing for the evaluation of the impact strength and tensile properties was carried our as per standard ASTM methods. Thermogravimetric analysis and differential scanning calorimetry were also used to assess the thermal degradation of the blends. Scanning electron micrographs were used to analyze fracture and blend morphologies. The results show significant improvement in the mechanical properties due to the addition of the compatibilizer, which effectively linked the two immiscible blend components. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1109–1120, 2006  相似文献   

16.
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
动态硫化对聚烯烃热塑性弹性体力学性能的影响   总被引:3,自引:2,他引:1  
通过分析动态化过程中橡胶相硫化和相反转之间的关系,从粘弹性角度出发,提出用压敏模型来描述橡胶弹性对橡塑间界面结构全的影响,此模型讨论了硫化速度和剪切速度对界面和力学性能的影响。采用分步动态硫化法使弹性体的力学性能得到明显提高。  相似文献   

18.
The rheological and morphological properties of blends based on high‐density polyethylene (HDPE) and a commercial ethylene–octene copolymer (EOC) produced by metallocene technology were investigated. The rheological properties were evaluated in steady and dynamic shear experiments at 190°C in shear rates ranging from 90 s?1 to 1500 s?1 and frequency range between 10?1 rad/s and 102 rad/s, respectively. These blends presented a high level of homogeneity in the molten state and rheological behavior was generally intermediate to those of the pure components. Scanning electron microscopy (SEM) showed that the blends exhibit dispersed morphologies with EOC domains distributed homogeneously and with particle size inferior to 2 μm. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2240–2246, 2002  相似文献   

19.
The dynamic rheological behavior of low‐density polyethylene (LDPE)/ultra‐high‐molecular‐weight polyethylene (UHMWPE) blends and linear low‐density polyethylene (LLDPE)/UHMWPE blends was measured in a parallel‐plate rheometer at 180, 190, and 200°C. Analysis of the log–additivity rule, Cole–Cole plots, Han curves, and Van Gurp curves of the LDPE/UHMWPE blends indicated that the blends were miscible in the melt. In contrast, the rheological properties of LLDPE/UHMWPE showed that the miscibility of the blends was decided by the composition of LLDPE. The differential scanning calorimetry results and scanning electron microscopy photos of the LLDPE/UHMWPE blends were consistent with the rheological properties, whereas with regard to the thermal and morphological properties of LDPE/UHMWPE blends, the results reveal three endothermic peaks and phase separation, which indicated a liquid–solid phase separation in the LDPE/UHMWPE blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The objective of this study was to investigate the degradability of linear low‐density polyethylene (LLDPE)/(soya powder) blends. The blends were compatibilized by epoxidized natural rubber with 50 mol% of epoxidation. They were exposed to a natural compost medium located in northern Malaysia. The degradability was evaluated by using tensile tests, a morphological study, carbonyl indices, crystallinity measurements, weight loss, and molecular‐weight changes. The tensile strength and elongation at break of the compatibilized blends decreased during one year of exposure. The colonization of fungus and the formation of pores were observed in micrographs. The carbonyl indices, crystallinity, and weight loss increased during exposure, thereby indicating the degradation of the blends. The reduction in molecular weight revealed the degradation of the LLDPE upon composting. Surprisingly, after composting, the compatibilized blends showed more degradation than the uncompatibilized ones. J. VINYL ADDIT. TECHNOL., 20:42–48, 2014. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号