首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-density polyethylene composite films filled with various contents of carbon fiber (CF) were manufactured by melt mixing. The electrical and self-heating properties of the composite films were investigated. The composite films containing 10 wt% CF were exposed to γ-ray irradiation. The structural, morphological, and self-heating properties of the irradiated composite films were examined. The results indicated that the surface temperature (Ts) of the composite films was strongly dependent on the applied voltage and filler content. The Ts of the irradiated composite films was higher than that of the non-irradiated films, which contributed to the lower thermal expansion and the higher degree of crystallization of the irradiated composite films. In addition, the mechanical properties of the irradiated composite films were significantly improved. Using a rechargeable battery as the applied voltage source to evaluate the self-heating property of the irradiated composite films, a heating temperature of 54.2 °C was achieved, which lasted for 6 h.  相似文献   

2.
Graphene has ultra-high electrical and thermal conductivity, which makes graphene as the most encouraging fillers for thermally conductive composites. Graphene and/or carbon black filled conductive polymer composite (CPC) films used as heating element are smarter than the traditional heating elements due to less environmental pollution, ease of application on many surfaces and possess the merits of lightweight. In this study, we investigated mainly the production, characterization and industrial application of graphene/carbon black reinforced styrene acrylic copolymer emulsion matrix composite films deposited on polyvinyl chloride for flexible heating element. After that, the films were dried at room temperature for 24 h in air. Structural and surface properties of the CPC films were characterized by X-ray diffraction and scanning electron microscopy. Temperature, time and voltage relation of the produced composite films were investigated. Heating and electrical properties of the CPC films were determined by using a thermal camera and 4-point probe measurement system, respectively. The electrical resistivity of the CPC films decreases from ~?108 to 101 Ω cm with increasing the filler content or using a combination of two fillers. Graphene and carbon black filled conductive polymer composites to be considered as candidates for flexible heating element applications exhibited good electrical and heating properties thanks to synergistic effect of fillers.  相似文献   

3.
The electrical conductivity and morphology of injection molded polypropylene based composites containing two conductive fillers, carbon black (CB) and carbon fibers (CF) were studied. Injection moldings containing both, CB and CF, where the content of each filler was above its own percolation threshold, resulted in similar or lower values of overall composite volume resistivity compared with the resistivity of systems filled only with CB at the corresponding content. However, the resistivity of two-filler systems is always higher than the resistivity of systems filled only with CF at the corresponding content. The morphology and fiber length analysis of the injection molded composites are quite intriguing. Fiber orientation in the injection molded two-filler systems was found to be almost perpendicular to the melt flow direction, with no significant skin-core fiber orientation patterns, contrary to the typically observed fiber orientation in injection molded fiber filled composites. Moreover, the CF breakage in the presence of the CB was found more intense than when just CF is used, resulting in shorter fibers with narrower length distributions. This unexpected fiber behavior is responsible for the unexpected electrical behavior. However, the coexistence of CB and CF electrically conductive networks, supporting each other, was confirmed, in spite of the mechanical disturbances caused by the presence of fibrilar and particulate fillers.  相似文献   

4.
对比研究了热塑性层间增韧和碳纳米管(CNT)膜层间混杂碳纤维(CF)/双马来酰亚胺复合材料不同层间结构调控方法,分析了其复合材料的压缩、动态力学、导电和电磁屏蔽等性能的变化.结果表明,热密实可显著降低层间CNT膜的厚度,抑制其局部富树脂程度,CNT膜-CF混杂复合材料的压缩强度得以提升,其压缩断口形貌明显不同于初始的C...  相似文献   

5.
Growing carbon nanotubes (CNT) on the surface of high performance carbon fibers (CF) provides a means to tailor the thermal, electrical and mechanical properties of the fiber–resin interface of a composite. However, many CNT growth processes require pretreatment of the fiber, deposition of an intermediate layer, or harsh growth conditions which can degrade tensile properties and limit the conduction between the fiber and the nanotubes. In this study, high density multi-wall carbon nanotubes were grown directly on two different polyacrylonitrile (PAN)-based carbon fibers (T650 and IM-7) using thermal Chemical Vapor Deposition (CVD). The influence of CVD growth conditions on the single-fiber tensile properties and CNT morphology was investigated. The mechanical properties of the resultant hybrid fibers were shown to depend on the carbon fiber used, the presence of a sizing (coating), the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. The CNT density and alignment morphology was varied with growth temperature and precursor flow rate. Overall, it was concluded that a hybrid fiber with a well-adhered array of dense MWCNTs could be grown on the unsized T650 fiber with no significant degradation in tensile properties.  相似文献   

6.
Electrically percolative composites of thermoplastic elastomers (TPE) filled with different concentrations of carbon nanotubes (CNT), carbon black (CB) and (CNT–CB) hybrid fillers were fabricated by melt blending. The effects of filler type and composition on the electrical properties of the percolative TPE composites were studied. Percolation threshold for CB-, CNT- and (CNT–CB)-based composites was found to be 0.06, 0.07 and 0.07 volume fraction respectively. Compared to CB-based composites and earlier reported results, CNT- and (CNT–CB)-based ones revealed an unexpectedly high percolation threshold, which otherwise considered an unwelcome phenomenon, lead to distinct and rare percolation characteristics of CNT filled percolative composites like per-percolation conductivity and a relatively steep percolation curves. CB-based composites showed a comparatively sharp insulator–conductor transition curve complementing the percolation characteristics CNT- and (CNT–CB)-based composites. Percolation threshold conductivity of the fillers was in the order of CB > CNT > (CNT–CB), while maximum attained conductivities followed the order of CNT > (CNT–CB) > CB. Conductivity order of fillers not only denied much reported synergic effect in (CNT–CB) filler but also highlighted the effect of percolation characteristics on the outcome of conductivity values. Results obtained were of theoretical as well as practical importance and were explained in the context of filler morphology and different dispersion characteristics of the carbon based fillers.  相似文献   

7.
The electrical conductivity and the specific surface area of conductive fillers in conductor‐insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG‐O/CNT). We report the effect of the rG‐O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG‐O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG‐O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.  相似文献   

8.
The effects of carbon filler type on the properties and performance of composite bipolar plates fabricated by compression molding of carbon fillers such as graphite, carbon black (CB), multi-walled carbon nanotube (MWNT), carbon fiber (CF) and powder type epoxy have been investigated. The electrical conductivity and flexural properties of the composites are increased by increasing the content of fibrous conducting fillers, e.g. MWNT and CF. On the contrary, incorporation of particulate fillers such as CB and graphite plays a significant role in enhancing the electrical conductivity but has a negative effect on the flexural properties of the composites. The current–voltage curve of the fuel cell indicates that the performance of the fuel cell is improved upon selection of an optimum amount of carbon filler in the composite bipolar plates.  相似文献   

9.
In this study, the effects of filler geometry on the electrical conductivity and electromagnetic interference (EMI) shielding properties of poly(trimethylene terephthalate) (PTT) composites filled with graphene nanosheets (GNSs), carbon nanotubes (CNTs), and GNS–CNT hybrid nanofillers have been investigated. The GNSs, CNTs, and hybrid GNS–CNT were well dispersed in the PTT matrix using a simple coagulation process. GNSs were prepared from graphene oxide (GO) through hydrazine reduction, and thermal reduction of GO at two different temperatures of 1050 and 1500 °C. PTT filled with different aspect ratios and oxygen functional groups of GNS were also prepared in order to compare the electrical conductivity and EMI shielding properties. The aspect ratios of GNSs and CNTs were estimated by using an ellipsoid model. Percolation scaling laws were applied to the magnitudes of conductivity to reveal the percolation network and filler dispersion. The percolation exponent of the PTT/GNS composites was larger than that of the PTT/CNT composites. The percolated filler–filler network at which the percolation exponent changed was correlated with the filler geometric structure. GNS–CNT hybrid nanofillers formed a complex double brush structure in the PTT/GNS–CNT composites. The geometric structure, aspect ratio, and intrinsic conductivity of carbon nanofillers affected the electrical percolation threshold and EMI shielding efficiency of the composites.  相似文献   

10.
Solution styrene butadiene rubber (S-SBR) composites reinforced with graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) were prepared and the electrical and various mechanical properties were compared to understand the specific dispersion and reinforcement behaviours of these nanostructured fillers. The electrical resistivity of the rubber composite gradually decreased with the increase of filler amount in the composite. The electrical percolation behaviour was found to be started at 15 phr (parts per hundred rubber) for GnP and 20 phr for EG filled systems, whereas a sharp drop was found at 5 phr for MWCNT based composites. At a particular filler loading, dynamic mechanical analysis and tensile test showed a significant improvement of the mechanical properties of the composites comprised of MWCNT followed by GnP and then EG. The high aspect ratio of MWCNT enabled to form a network at low filler loading and, consequently, a good reinforcement effect was observed. To investigate the effect of hybrid fillers, MWCNT (up to 5 phr) were added in a selected composition of EG based compounds. The formation of a mixed filler network showed a synergistic effect on the improvement of electrical as well as various mechanical properties.  相似文献   

11.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid carbon nanotube–alumina (CNT–Al2O3) filler, via chemical vapour deposition and a physically mixed CNT–Al2O3 filler, at various filler loadings (i.e., 1–5%). The tensile and thermal properties of both nanocomposites were investigated at different weight percentages of filler loading. The CNT–Al2O3 hybrid epoxy composites showed higher tensile and thermal properties than the CNT–Al2O3 physically mixed epoxy composites. This increase was associated with the homogenous dispersion of CNT–Al2O3 particle filler; as observed under a field emission scanning electron microscope. It was demonstrated that the CNT–Al2O3 hybrid epoxy composites are capable of increasing tensile strength by up to 30%, giving a tensile modulus of 39%, thermal conductivity of 20%, and a glass transition temperature value of 25%, when compared to a neat epoxy composite.  相似文献   

12.
Electrostatic self-assembled carbon nanotube (CNT)/nano carbon black (NCB) composite fillers are added into cement mortar to fabricate smart cement-based materials. The grape bunch structure of CNT/NCB composite fillers is beneficial for dispersing CNT/NCB in cement mortar matrix and achieving cooperative improvement effect. The mechanical, electrically conductive, and piezoresistive behaviors of the cement mortar are investigated. The CNT/NCB composite fillers can effectively enhance the flexural strength and electrical conductivity of cement mortars, and endow stable and sensitive piezoresistivity to cement mortar at a low filler content. However, they weaken the compressive strength of cement mortar to some extent. The percolation threshold zone of cement mortar with CNT/NCB composite fillers ranges in the amount of 0.39–1.52 vol.%. The optimal content of CNT/NCB composite fillers is 2.40 vol.% for piezoresistivity and the stress and strain sensitivities can reach 2.69% MPa−1 and 704, respectively.  相似文献   

13.
A conductive silicone rubber (SR) composite, filled with both carbon nanotubes (CNTs) and carbon black (CB) is prepared by a simple ball milling method. Because of the good dispersion and synergistic effects of CNT and CB, the SR composite (SR with 2.5 phr CB and 1.0 phr CNT hybrid fillers) shows improvement in mechanical properties such as tensile strength and strain to failure. As well, due to the assembly of conductive pathways generated by the CNT and CB, the nanocomposite becomes highly conductive at a comparatively low concentration, with high sensitivity for tensile and compressive stress. Long-term measurement of properties shows that the SR composite maintains the excellent electrical properties under different strain histories. These outstanding properties show that the SR composite has potential applications in tensile and pressure sensors.  相似文献   

14.
The effects of several carbon series additions including graphite (Gr), carbon fiber (CF) and carbon nanotube (CNT) on the microstructures and tribological behaviors of polyimide-based (PI-based) composites under sea water lubrication were investigated systematically. Results showed that the incorporation of any filler improved the wear resistance of polyimide (PI) under sea water lubrication, but did not decrease the friction coefficient. Especially the combined incorporation of 10%Gr, 10%CF and 5%CNT (in volume) was the most effective in improving the anti-wear properties of PI. This suggested that there existed a synergetic effect among the three carbon series additions on improving the wear resistance of PI. During the friction and wear process, the carbon additions played different roles in improving the wear resistance of PI-based composites. CF with high compressive strength can carry the main load applied on the sliding surfaces to inhibit the wear of PI matrix. CNT can decrease the stress concentration around CF and further protect CF from being broken. Gr in the form of much thinner layer can not only improve the loading capacity, but also play the same role of CNT to avoid CF carrying too much load. More importantly, Gr, CF and CNT worked synergistically to condense the microstructure of PI-based composite and ameliorate the interfacial combination between all fillers and PI matrix, which well explained why the PI–10%Gr–10%CF–5%CNT composite had excellent tribological properties, even under heavy load or high sliding speed.  相似文献   

15.
m-Aramid nanocomposite films containing 1.0 wt% hybrid fillers of different compositions of graphene and multi-walled carbon nanotube (MWCNT) are prepared by an efficient solution-casting method, and their electric heating behavior is investigated as a function of the composition of hybrid fillers. Electron microscope images and X-ray diffraction patterns reveal that the hybrid fillers are well dispersed in the m-aramid matrix by forming interconnected networks among graphene sheets and MWCNTs. The electrical resistivity of the nanocomposite films is decreased gradually from ~105 to 101 Ω cm with increasing the MWCNT content in the hybrid fillers. Accordingly, maximum temperature attained at a given applied voltage for the nanocomposite films can be finely controlled by the graphene/MWCNT composition of 1.0 wt% hybrid fillers. The m-aramid/hybrid filler nanocomposite films also exhibit excellent electric heating performance in aspects of rapid temperature response and high electric power efficiency at applied voltages of 1–100 V.  相似文献   

16.
Electrically conducting nanocomposites of polyaniline (PANI) with carbon-based fillers have evinced considerable interest for various applications such as rechargeable batteries, microelectronics, sensors, electrochromic displays and light-emitting and photovoltaic devices. The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor sulfonic acid (CSA), hydrochloric acid (HCl) and sulfuric acid (H2SO4) on the electrical conductivity of PANI. The morphological, structural and electrical properties of neat PANI and carbon–PANI nanocomposites were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT–IR), UV–Vis spectroscopy and the four-point probe technique, respectively. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) studies were also conducted for different PANI composites. The results show that PANI and carbon–PANI composites with organic acid dopants show good thermal stability and higher electrical conductivity than those with inorganic acid dopants. Also, carbon–PANI composites generally show higher electrical conductivity than neat PANI, with highest conductivities for PANI–CNT composites. Thus, in essence, PANI–CNT composites prepared using organic acid dopants are most suitable for conducting applications.  相似文献   

17.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

18.
Conducting polymer composites (CPC) were prepared with an ethylene–octene copolymer (EOC) matrix and with either carbon fibers (CFs) or multiwall carbon nanotubes (MWCNTs) as fillers. Their electrical and thermal conductivities, mechanical properties and thermal stabilities were evaluated and compared. CF/EOC composites showed percolation behavior at a lower filler level (5 wt.%) than the MWCNT/EOC composites (10 wt.%) did. Alternating current (AC) conductivity and real part of permittivity (dielectric constant) of these composites were found to be frequency-dependent. Dimensions and electrical conductivities of individual fillers have a great influence on the conductivities of the composites. CF/EOC composites possessed higher conductivity than the MWCNT-composites at all concentrations, due to the higher length and diameter of the CF filler. Both electrical and thermal conductivities were observed to increase with increasing filler level. Tensile moduli and thermal stabilities of both (CF/EOC and MWCNT/EOC) composites increase with rising filler content. Improvements in conductivities and mechanical properties were achieved without any significant increase in the hardness of the composites; therefore, they can be potentially used in pressure/strain sensors. Thermoelectric behavior of the composites was also studied. Accordingly, CF and MWCNT fillers are versatile and playing also other roles in their composites than just being conducting fillers.  相似文献   

19.
The ablation properties and thermal conductivity of carbon nanotube (CNT) and carbon fiber (CF)/phenolic composites were evaluated for different filler types and structures. It was found that the mechanical and thermal properties of phenolic-polymer matrix composites were improved significantly by the addition of carbon materials as reinforcement. The concentrations of CF and CNT reinforcing materials used in this study were 30 vol% and 0.5 wt%, respectively. The thermal conductivity and thermal diffusion of the different composites were observed during ablation testing, using an oxygen–kerosene (1:1) flame torch. The thermal conductivity of CF mat/phenolic composites was higher than that of random CF/phenolic composites. Both CF mat and CNT/phenolic composites exhibited much better thermal conductivity and ablation properties than did neat phenolic resin. The more conductive carbon materials significantly enhanced the heat conduction and dissipation from the flame location, thereby minimizing local thermal damage.  相似文献   

20.
Inorganic ceramics such as calcium copper titanate, CaCu3Ti4O12 (CCTO) and barium titanate (BaTiO3) were used as fillers to produce epoxy thin film composites for capacitor application. The effects of filler types and loading range on the dielectric, tensile, morphology, and thermal properties of the epoxy thin film composites were determined. Results showed that epoxy thin film composites with 20 vol% filler loading of CCTO and BaTiO3 showed good dielectric properties, thermal stability, and thermal conductivity. However, the tensile properties of the CCTO/epoxy thin film composite was reduced as the filler loading increased. On the other hand, the tensile properties of BaTiO3/epoxy thin film composite improved as the filler loading increased. Hybrid fillers CCTO and BaTiO3 filled epoxy composites were fabricated and the effect of hybrid fillers on the dielectric properties and morphology of the epoxy thin film composites were investigated. Results indicated that positive hybrid effect in dielectric constant and dielectric loss showed by the hybrid composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号