首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Direct laser writing methods based on two‐photon polymerization (2PP) are powerful tools for the on‐demand printing of precise and complex 3D architectures at the micro and nanometer scale. While much progress was made to increase the resolution and the feature size throughout the years, by carefully designing a material, one can confer specific functional properties to the printed structures thus making them appealing for peculiar and novel applications. This Review summarizes the state‐of‐the‐art of functional resins and photoresists used in 2PP, discussing both the range of material functions available and the methods used to prepare them, highlighting advantages and disadvantages of different classes of materials in achieving certain properties.  相似文献   

2.
A nanometer‐thick carbon film with a highly ordered pattern structure is very useful in a variety of applications. However, its large‐scale, high‐throughput, and low‐cost fabrication is still a great challenge. Herein, microcontact printing (µCP) and direct laser writing carbonization (DLWc) are combined to develop a novel method that enables ease of fabrication of nanometer‐thick and regularly patterned carbon disk arrays (CDAs) and holey carbon films (HCFs) from a pyromellitic dianhydride‐oxydianiline‐based polyamic acid (PAA) solution. The effect of PAA concentration and pillar lattice structure of the polydimethyl siloxane stamp are systematically studied for their influence on the geometrical parameter, surface morphology, and chemical structure of the finally achieved CDAs and HCFs. Within the PAA concentration being investigated, the averaged thickness of CDAs and HCFs can be tailored in a range from a few tens to a few hundred of nanometers. The µCP+DLWc‐enabled electrically conductive CDAs and HCFs possess the characteristics of ease‐of‐fabrication, nanometer‐thickness, highly regular and controlled patterns and structures, and the ability to form on both hard and soft substrates, which imparts usefulness in electronics, photonics, energy storage, catalysis, tissue engineering, as well as physical, chemical, and bio‐sensing applications.  相似文献   

3.
To mimic the adhesive effects of gecko toes, artificial surfaces have been manufactured recently using polydimethylsiloxanes (PDMS). However, the effects of repeated contacts on the adhesive properties remain largely unexplored. In this paper we report on the effect of repeated pull‐off force measurements on the adhesion behavior of PDMS (polymer kit Sylgard 184, Dow Corning) tested with a borosilicate glass probe. A decrease in pull‐off force with increase in number of test cycles is found until a plateau is reached. The initial value and the rate of change in pull‐off force strongly depend on the sample preparation procedure, including curing time and cross‐linking. It is proposed that the behavior is due to steady coverage of the probe with free oligomers. The results are crucial for developing reusable, durable, and residue‐free bioinspired adhesives.  相似文献   

4.
A simple strategy for enabling conductive pressure sensitive adhesives (PSAs) to work as light‐responsive materials is reported. Direct laser‐writing of PSA substrates was achieved by means of a continuous‐wave He‐Ne laser focused through the objectives of an optical microscope. This approach takes advantage of cooperative interplay between viscoelastic properties of PSAs and enhanced thermal conductivity provided by an extra overlayer of gold. In particular, the thickness of the gold layer is a crucial parameter for tuning the substrate responsiveness. Self‐healing and self‐degradation processes can be exploited for controlling the lifetime of the written information, whereas additional protective coatings can be introduced to achieve permanent storage.  相似文献   

5.
In nature, many examples of multi‐scale surfaces with outstanding tribological properties such as reduced friction and wear under dry friction and lubricated conditions can be found. To determine whether multi‐scale surfaces positively affect the frictional and wear performance, tests are performed on a ball‐on‐disk tribometer under lubricated conditions using an additive‐free poly‐alpha‐olefine oil under a contact pressure of around 1.29 GPa. For this purpose, stainless steel specimens (AISI 304) are modified by micro‐coining (hemispherical structures with a structural depth of either 50 or 95 μm) and subsequently by direct laser interference patterning (cross‐like pattern with 9 μm periodicity) to create a multi‐scale pattern. The comparison of different sample states (polished reference, laser‐patterned, micro‐coined, and multi‐scale) shows a clear influence of the fabrication technique. In terms of the multi‐scale structures, the structural depth of the coarser micro‐coining plays an important role. In case of lower coining depths (50 μm), the multi‐scale specimens show an increased coefficient of friction compared to the purely micro‐coined surfaces, whereas larger coining depths (95 μm) result in stable and lower friction values for the multi‐scale patterns.  相似文献   

6.
The ability to shape‐shift in response to a stimulus increases an organism's survivability in nature. Similarly, man‐made dynamic and responsive “smart” microtechnology is crucial for the advancement of human technology. Here, 10–30 μm shape‐changing 3D BSA protein hydrogel microstructures are fabricated with dynamic, quantitative, directional, and angle‐resolved bending via two‐photon photolithography. The controlled directional responsiveness is achieved by spatially controlling the cross‐linking density of BSA at a nanometer lengthscale. Atomic force microscopy measurements of Young's moduli of structures indicate that increasing the laser writing distance at the z‐axis from 100–500 nm decreases the modulus of the structure. Hence, through nanoscale modulation of the laser writing z‐layer distance at the nanoscale, control over the cross‐linking density is possible, allowing for the swelling extent of the microstructures to be quantified and controlled with high precision. This method of segmented moduli is applied within a single microstructure for the design of shape‐shifting microstructures that exhibit stimulus‐induced chirality, as well as for the fabrication of a free‐standing 3D microtrap which is able to open and close in response to a pH change.  相似文献   

7.
This article concerns some aspects of the research and development work, which is done within a project of the German Federal Ministry of Education and Research (BMBF) entitled: “nano functionalization of interfaces for data‐, textile‐, building‐, medicine‐, bio‐, and aerospace‐ technology”. In the following the broad field of applications of a surface modification on a nanometer scale is discussed. Also some scientific methods to characterize surface modifications of this kind are discussed. By means of low pressure plasma technology it is possible to functionalize surfaces and thus to well adjust their properties with respect to their application. This is done without changing the bulk material characteristics. The surfaces of the treated workpieces are covered by an ultrathin, i.e. only a few nanometer thick, fluorine‐carbon polymer layer by a plasma process. The physical and chemical surface properties, such as surface energy, roughness (on nanometer scale), dynamic wetting behaviour, or the adhesion properties against other materials, can be simple changed by varying the plasma process parameters. It is shown, that in future this surface modification will meet a broad field of applications.  相似文献   

8.
The amazing adhesion of gecko pads to almost any kind of surfaces has inspired a very active research direction over the last decade: the investigation of how geckos achieve this feat and how this knowledge can be turned into new strategies to reversibly join surfaces. This article reviews the fabrication approaches used so far for the creation of micro‐ and nanostructured fibrillar surfaces with adhesive properties. In the light of the pertinent contact mechanics, the adhesive properties are presented and discussed. The decisive design parameters are fiber radius and aspect ratio, tilt angle, hierarchical arrangement and the effect of the backing layer. Also first responsive systems that allow thermal switching between nonadhesive and adhesive states are described. These structures show a high potential of application, providing the remaining issues of robustness, reliability, and large‐area manufacture can be solved.  相似文献   

9.
In nature, biological nanomaterials are synthesized under ambient conditions in a natural microscopic‐sized laboratory, such as a cell. Biological molecules, such as peptides and proteins, undergo self‐assembly processes in vivo and in vitro, and these monomers are assembled into various nanometer‐scale structures at room temperature and atmospheric pressure. The self‐assembled peptide nanostructures can be further organized to form nanowires, nanotubes, and nanoparticles via their molecular‐recognition functions. The application of molecular self‐assemblies of synthetic peptides as nanometer‐scale building blocks in devices is robust, practical, and affordable due to their advantages of reproducibility, large‐scale production ability, monodispersity, and simpler experimental methods. It is also beneficial that smart functionalities can be added at desired positions in peptide nanotubes through well‐established chemical and peptide syntheses. These features of peptide‐based nanotubes are the driving force for investigating and developing peptide nanotube assemblies for biological and non‐biological applications.  相似文献   

10.
Molded interconnect devices (MID) based on laser direct structuring LPKF‐LDS® technology are widely used in the realm of electronics. Nowaday, design and development of new materials with improved properties for 3D‐MID are in focus. In this work, novel materials based on alumina ceramic with copper oxide additives are developed for this technology. The effect of the sintering temperature and the doping amount of copper oxide on the metallization quality is investigated. Furthermore, the influence of laser process parameters (e.g., laser power, velocity’, and frequency) on process output namely groove dimensions, groove profile, characteristics of structured area, and quality of the final 3D‐MID products are discussed. The novel ceramic materials show high flexibility to realize very fine structures. Moreover, the laser‐structured and metallized area shows a free edge lap with good quality. After metallization high accuracy with copper line/pitch of 16 μm/20 μm is achieved.
  相似文献   

11.
Geckos, which are capable of walking on walls and hanging from ceilings with the help of micro-/nano-scale hierarchical fibrils (setae) on their toe pads, have become the main prototype in the design and fabrication of fibrillar dry adhesives. As the unique fibrillar feature of the toe pads of geckos allows them to develop an intimate contact with the substrate the animal is walking on or clinging to, it is expected that the toe setae exchange significant numbers of electric charges with the contacted substrate via the contact electrification (CE) phenomenon. Even so, the possibility of the occurrence of CE and the contribution of the resulting electrostatic interactions to the dry adhesion of geckos have been overlooked for several decades. In this study, by measuring the magnitude of the electric charges, together with the adhesion forces, that gecko foot pads develop in contact with different materials, we have clarified for the first time that CE does contribute effectively to gecko adhesion. More importantly, we have demonstrated that it is the CE-driven electrostatic interactions which dictate the strength of gecko adhesion, and not the van der Waals or capillary forces which are conventionally considered as the main source of gecko adhesion.  相似文献   

12.
The use of micrometer and nanometer‐sized organic single crystals to fabricate devices can retain all the advantages of single crystals, avoid the difficulties of growing large crystals, and provide a way to characterize organic semiconductors more efficiently. Moreover, the effective use of such “small” crystals will be beneficial to nanoelectronics. Here we review the recent progress of organic single‐crystalline transistors based on micro‐/nanometer‐sized structures, namely fabrication methods and related technical issues, device properties, and current challenges.  相似文献   

13.
Gecko feet integrate many intriguing functions such as strong adhesion, easy detachment, and self-cleaning. Mimicking gecko toe pad structure leads to the development of new types of fibrillar adhesives useful for various applications. In this Concept article, in addition to the design of adhesive mimics by replicating gecko geometric features, we show a new trend of rational design by adding other physical, chemical, and biological principles on to the geometric merits, for enhancing robustness, responsive control, and durability. Current challenges and future directions are highlighted in the design and nanofabrication of biomimetic fibrillar adhesives.  相似文献   

14.
Nacre‐mimetic 2D nanofluidic materials with densely packed sub‐nanometer‐height lamellar channels find widespread applications in water‐, energy‐, and environment‐related aspects by virtue of their scalable fabrication methods and exceptional transport properties. Recently, light‐powered nanofluidic ion transport in synthetic materials gained considerable attention for its remote, noninvasive, and active control of the membrane transport property using the energy of light. Toward practical application, a critical challenge is to overcome the dependence on inhomogeneous or site‐specific light illumination. Here, asymmetric photonic‐ionic devices based on kirigami‐tailored graphene oxide paper are fabricated, and directional nanofluidic ion transport properties therein powered by full‐area light illumination are demonstrated. The in‐plane asymmetry of the graphene oxide paper is essential to the generation of photoelectric driving force under homogeneous illumination. This light‐powered ion transport phenomenon is explained based on a modified carrier diffusion model. In asymmetric nanofluidic structures, enhanced recombination of photoexcited charge carriers at the membrane boundary breaks the electric potential balance in the horizontal direction, and thus drives the ion transport in that direction under symmetric illumination. The kirigami‐based strategy provides a facile and scalable way to fabricate paper‐like photonic‐ionic devices with arbitrary shapes, working as fundamental elements for large‐scale light‐harvesting nanofluidic circuits.  相似文献   

15.
Large‐scale ordered nanostructure arrays on substrates, including nanowires, nanotubes, nanodots, and nano‐holes, can be fabricated using template fabrication processes. The controllable structural parameters and properties of the ordered nanostructure arrays make them quite suitable to be used in many device‐related application areas. It is shown that large‐scale nanowire arrays are good candidates for the realization of a nano‐generator based on the piezoelectric effect of ZnO nanowires. The mechanism of a proposed high‐efficient nano‐generator based on an assembled nanowire/nanohole embedded structure shows high application potentials for biological and nanometer‐sized devices.  相似文献   

16.
The micro‐supercapacitors are of great value for portable, flexible, and integrated electronic equipments. Here, the large‐scale and integrated asymmetrical micro‐supercapacitor (AMSC) array is fabricated in virtue of the laser direct writing and electrodeposition technology. The AMSC shows the ideal flexibility, high areal specific capacitance (21.8 mF cm?2), and good rate capability. Moreover, its energy density reaches 12.16 µW h cm?2, outperforming most micro‐supercapacitors reported previously. Meanwhile, large‐scale series‐connected AMSCs are integrated on the flexible substrates (e.g., indium tin oxide‐polyethylene terephthalate film), which can power a veriety of the commercial electronics. The combination of AMSCs array, solar cell, and electronic device proves the feasibility for practical application in the portable, flexible, and integrated electronic equipments.  相似文献   

17.
Few‐layer black phosphorus (BP) has emerged as one of the most promising candidates for post‐silicon electronic materials due to its outstanding electrical and optical properties. However, lack of large‐scale BP thin films is still a major roadblock to further applications. The most widely used methods for obtaining BP thin films are mechanical exfoliation and liquid exfoliation. Herein, a method of directly synthesizing continuous BP thin films with the capability of patterning arbitrary shapes by employing ultrafast laser writing with confinement is reported. The physical mechanism of confined laser metaphase transformation is understood by molecular dynamics simulation. Ultrafast laser ablation of BP layer under confinement can induce transient nonequilibrium high‐temperature and high‐pressure conditions for a few picoseconds. Under optimized laser intensity, this process induces a metaphase transformation to form a crystalline BP thin film on the substrate. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy techniques are utilized to characterize the morphology of the resulting BP thin films. Field‐effect transistors are fabricated on the BP films to study their electrical properties. This unique approach offers a general methodology to mass produce large‐scale patterned BP films with a one‐step manufacturing process that has the potential to be applied to other 2D materials.  相似文献   

18.
Inspired by the microstructure of nacre, material design, and large‐scale integration of artificial nanofluidic devices step into a completely new stage, termed 2D nanofluidics, in which mass and charge transportation are confined in the interstitial space between reconstructed 2D nanomaterials. However, all the existing 2D nanofluidic systems are reconstituted from homogeneous nanobuilding blocks. Herein, this paper reports the bottom‐up construction of 2D nanofluidic materials with kaolinite‐based Janus nanobuilding blocks, and demonstrates two types of electrokinetic energy conversion through the network of 2D nanochannels. Being different from previous 2D nanofluidic systems, two distinct types of sub‐nanometer‐ and nanometer‐wide fluidic channels of about 6.8 and 13.8 Å are identified in the reconstructed kaolinite membranes (RKM), showing prominent surface‐governed ion transport behaviors and nearly perfect cation‐selectivity. The RKMs exhibit superior capability in osmotic and hydraulic energy conversion, compared to graphene‐based membranes. The mineral‐based 2D nanofluidic system opens up a new avenue to self‐assemble asymmetric 2D nanomaterials for energy, environmental, and healthcare applications.  相似文献   

19.
The integrated optimization of lightweight cellular materials and structures are discussed in this paper. By analysing the basic features of such a two‐scale problem, it is shown that the optimal solution strongly depends upon the scale effect modelling of the periodic microstructure of material unit cell (MUC), i.e. the so‐called representative volume element (RVE). However, with the asymptotic homogenization method used widely in actual topology optimization procedure, effective material properties predicted can give rise to limit values depending upon only volume fractions of solid phases, properties and spatial distribution of constituents in the microstructure regardless of scale effect. From this consideration, we propose the design element (DE) concept being able to deal with conventional designs of materials and structures in a unified way. By changing the scale and aspect ratio of the DE, scale‐related effects of materials and structures are well revealed and distinguished in the final results of optimal design patterns. To illustrate the proposed approach, numerical design problems of 2D layered structures with cellular core are investigated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Typical bulk adhesives are characterized by soft, tacky materials with elastic moduli well below 1MPa. Geckos possess subdigital adhesives composed mostly of beta-keratin, a relatively stiff material. Biological adhesives like those of geckos have inspired empirical and modelling research which predicts that even stiff materials can be effective adhesives if they take on a fibrillar form. The molecular structure of beta-keratin is highly conserved across birds and reptiles, suggesting that material properties of gecko setae should be similar to that of beta-keratin previously measured in birds, but this has yet to be established. We used a resonance technique to measure elastic bending modulus in two species of gecko from disparate habitats. We found no significant difference in elastic modulus between Gekko gecko (1.6 GPa +/- 0.15s.e.; n=24 setae) and Ptyodactylus hasselquistii (1.4 GPa +/- 0.15s.e.; n=24 setae). If the elastic modulus of setal keratin is conserved across species, it would suggest a design constraint that must be compensated for structurally, and possibly explain the remarkable variation in gecko adhesive morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号