首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing new synthetic methods for the controlled synthesis of Pt‐based or non‐Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel‐cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one‐dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt‐based, Pd‐based, or 1D metal‐free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel‐cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt‐based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt‐based NWs or NTs, non‐Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel‐cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel‐cell technology.  相似文献   

2.
Carbon‐based nanocomposites have shown promising results in replacing commercial Pt/C as high‐performance, low cost, nonprecious metal‐based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal–air batteries. Herein, a general approach for the production of 1D porous nitrogen‐doped graphitic carbon fibers embedded with active ORR components, (M/MOx, i.e., metal or metal oxide nanoparticles) using a facile two‐step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite–metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N‐doped graphitic carbon fibers, especially Co3O4, exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co3O4 and robust 1D porous structures composed of interconnected N‐doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields.  相似文献   

3.
In the face of the global energy challenge and progressing global climate change, renewable energy systems and components, such as fuel cells and electrolyzers, which close the energetic oxygen and carbon cycles, have become a technology development priority. The electrochemical oxygen reduction reaction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR) are important electrocatalytic processes that proceed at gas diffusion electrodes of hydrogen fuel cells and CO2 electrolyzers, respectively. However, their low catalytic activity (voltage efficiency), limited long‐term stability, and moderate product selectivity (related to their Faradaic efficiency) have remained challenges. To address these, suitable catalysts are required. This review addresses the current state of research on Pt‐based and Cu‐based nanoalloy electrocatalysts for ORR and CO2RR, respectively, and critically compares and contrasts key performance parameters such as activity, selectivity, and durability. In particular, Pt nanoparticles alloyed with transition metals, post‐transition metals and lanthanides, are discussed, as well as the material characterization and their performance for the ORR. Then, bimetallic Cu nanoalloy catalysts are reviewed and organized according to their main reaction product generated by the second metal. This review concludes with a perspective on nanoalloy catalysts for the ORR and the CO2RR, and proposes future research directions.  相似文献   

4.
Metal‐free electrocatalysts have been extensively developed to replace noble metal Pt and RuO2 catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in fuel cells or metal–air batteries. These electrocatalysts are usually deposited on a 3D conductive support (e.g., carbon paper or carbon cloth (CC)) to facilitate mass and electron transport. For practical applications, it is desirable to create in situ catalysts on the carbon fiber support to simplify the fabrication process for catalytic electrodes. In this study, the first example of in situ exfoliated, edge‐rich, oxygen‐functionalized graphene on the surface of carbon fibers using Ar plasma treatment is successfully prepared. Compared to pristine CC, the plasma‐etched carbon cloth (P‐CC) has a higher specific surface area and an increased number of active sites for OER and ORR. P‐CC also displays good intrinsic electron conductivity and excellent mass transport. Theoretical studies show that P‐CC has a low overpotential that is comparable to Pt‐based catalysts, as a result of both defects and oxygen doping. This study provides a simple and effective approach for producing highly active in situ catalysts on a carbon support for OER and ORR.  相似文献   

5.
Development of alternative energy sources is crucial to tackle challenges encountered by the growing global energy demand. Hydrogen fuel, a promising way to store energy produced from renewable power sources, can be converted into electrical energy at high efficiency via direct electrochemical conversion in fuel cells, releasing water as the sole byproduct. One important drawback to current fuel‐cell technology is the high content of platinum‐group‐metal (PGM) electrocatalysts required to perform the sluggish oxygen reduction reaction (ORR). Addressing this challenge, remarkable progress has been made in the development of low‐cost PGM‐free electrocatalysts synthesized from inexpensive, earth‐abundant, and easily sourced materials such as iron, nitrogen, and carbon (Fe–N–C). PGM‐free Fe–N–C electrocatalysts now exhibit ORR activities approaching that of PGM electrocatalysts but at a fraction of the cost, promising to significantly reduce overall fuel‐cell technology costs. Herein, recent developments in PGM‐free electrocatalysis, demonstrating increased fuel‐cell performance, as well as efforts aimed at understanding the key limiting factor, i.e., the nature of the PGM‐free active site, are summarized. Further improvements will be accomplished through the controlled and/or rationally designed synthesis of materials with higher active‐site densities, while at the same time establishing methods to mitigate catalyst degradation.  相似文献   

6.
The oxygen reduction reaction (ORR) is a core reaction for electrochemical energy technologies such as fuel cells and metal–air batteries. ORR catalysts have been limited to platinum, which meets the requirements of high activity and durability. Over the last few decades, a variety of materials have been tested as non‐Pt catalysts, from metal–organic complex molecules to metal‐free catalysts. In particular, nitrogen‐doped graphitic carbon materials, including N‐doped graphene and N‐doped carbon nanotubes, have been extensively studied. However, due to the lack of understanding of the reaction mechanism and conflicting knowledge of the catalytic active sites, carbon‐based catalysts are still under the development stage of achieving a performance similar to Pt‐based catalysts. In addition to the catalytic viewpoint, designing mass transport pathways is required for O2. Recently, the importance of pyridinic N for the creation of active sites for ORR and the requirement of hydrophobicity near the active sites have been reported. Based on the increased knowledge in controlling ORR performances, bottom‐up preparation of N‐doped carbon catalysts, using N‐containing conjugative molecules as the assemblies of the catalysts, is promising. Here, the recent understanding of the active sites and the mechanism of ORRs on N‐doped carbon catalysts are reviewed.  相似文献   

7.
The increasing interest in fuel cell technology encourages the development of efficient and low‐cost electrocatalysts to replace the Pt based materials for catalyzing the cathodic oxygen reduction reaction (ORR). In the present work, a nitrogen and phosphorus co‐coordinated manganese atom embedded mesoporous carbon composite (MnNPC‐900) is successfully prepared via a polymerization of o‐phenylenediamine followed by calcination at 900 °C. The MnNPC‐900 composite shows a high ORR activity in alkaline media, offering an onset potential of 0.97 V, and a half‐wave potential of 0.84 V (both vs reversible hydrogen electrode) with a loading of 0.4 mg cm?2. This performance not only exceeds its phosphorus‐free counterpart (MnNC‐900), but also is comparable to the Pt/C catalyst under identical measuring conditions. The significantly enhanced ORR performance of MnNPC‐900 can be ascribed to: i) the introduction of phosphorus assists the generation of mesopores during the pyrolysis and endows the MnNPC‐900 composite with large surface area and pore volume, thus facilitating the mass transfer process and increases the number of exposed active sites. ii) The formation of N,P co‐coordinated atomic‐scale Mn sites (MnNxPy), which modifies the electronic configuration of the Mn atoms and thereby boosts the ORR catalytic activity.  相似文献   

8.
Selectively exposing active surfaces and judiciously tuning the near‐surface composition of electrode materials represent two prominent means of promoting electrocatalytic performance. Here, a new class of Pt3Fe zigzag‐like nanowires (Pt‐skin Pt3Fe z‐NWs) with stable high‐index facets (HIFs) and nanosegregated Pt‐skin structure is reported, which are capable of substantially boosting electrocatalysis in fuel cells. These unique structural features endow the Pt‐skin Pt3Fe z‐NWs with a mass activity of 2.11 A mg?1 and a specifc activity of 4.34 mA cm?2 for the oxygen reduction reaction (ORR) at 0.9 V versus reversible hydrogen electrode, which are the highest in all reported PtFe‐based ORR catalysts. Density function theory calculations reveal a combination of exposed HIFs and formation of Pt‐skin structure, leading to an optimal oxygen adsorption energy due to the ligand and strain effects, which is responsible for the much enhanced ORR activities. In contrast to previously reported HIFs‐based catalysts, the Pt‐skin Pt3Fe z‐NWs maintain ultrahigh durability with little activity decay and negligible structure transformation after 50 000 potential cycles. Overcoming a key technical barrier in electrocatalysis, this work successfully extends the nanosegregated Pt‐skin structure to nanocatalysts with HIFs, heralding the exciting prospects of high‐effcient Pt‐based catalysts in fuel cells.  相似文献   

9.
Replacing precious platinum with earth‐abundant materials for the oxygen reduction reaction (ORR) in fuel cells has been the objective worldwide for several decades. In the last 10 years, the fastest‐growing branch in this area has been carbon‐based metal‐free ORR electrocatalysts. Great progress has been made in promoting the performance and understanding the underlying fundamentals. Here, a comprehensive review of this field is presented by emphasizing the emerging issues including the predictive design and controllable construction of porous structures and doping configurations, mechanistic understanding from the model catalysts, integrated experimental and theoretical studies, and performance evaluation in full cells. Centering on these topics, the most up‐to‐date results are presented, along with remarks and perspectives for the future development of carbon‐based metal‐free ORR electrocatalysts.  相似文献   

10.
Dealloyed Pt bimetallic core–shell catalysts derived from low‐Pt bimetallic alloy nanoparticles (e.g, PtNi3) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub‐10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size‐controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size‐selected growth mechanism is studied comprehensively. This enables us to address their size‐dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt‐rich bimetallic nanoparticles, the Pt‐poor PtNi3 nanoparticles exhibit an unusual “volcano‐shaped” size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long‐term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity.  相似文献   

11.
The oxygen reduction reaction (ORR) plays an important role in the fields of energy storage and conversion technologies, including metal–air batteries and fuel cells. The development of nonprecious metal electrocatalysts with both high ORR activity and durability to replace the currently used costly Pt‐based catalyst is critical and still a major challenge. Herein, a facile and scalable method is reported to prepare ZIF‐8 with single ferrocene molecules trapped within its cavities (Fc@ZIF‐8), which is utilized as precursor to porous single‐atom Fe embedded nitrogen‐doped carbon (Fe–N–C) during high temperature pyrolysis. The catalyst shows a half‐wave potential (E1/2) of 0.904 V, 67 mV higher than commercial Pt/C catalyst (0.837 V), which is among the best compared with reported results for ORR. Significant electrochemical properties are attributed to the special configuration of Fc@ZIF‐8 transforming into a highly dispersed iron–nitrogen coordination moieties embedded carbon matrix.  相似文献   

12.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm?2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.  相似文献   

13.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.  相似文献   

14.
The electrocatalytic nitrogen reduction reaction (NRR) is a promising catalytic system for N2 fixation in ambient conditions. Currently, metal‐based catalysts are the most widely studied catalysts for electrocatalytic NRR. Unfortunately, the low selectivity and poor resistance to acids and bases, and the low Faradaic efficiency, production rate, and stability of metal‐based catalysts for NRR make them uncompetitive for the synthesis of ammonia in comparison to the industrial Haber–Bosch process. Inspired by applications of carbon‐based metal‐free catalysts (CMFCs) for the oxygen reduction reaction (ORR) and CO2 reduction reaction (CO2RR), the studies of these CMFCs in electrocatalytic NRR have attracted great attention in the past year. However, due to the differences in electrocatalytic NRR, there are several critical issues that need to be addressed in order to achieve rational design of advanced carbon‐based metal‐free electrocatalysts to improve activity, selectivity, and stability for NRR. Herein, the recent developments in the field of carbon‐based metal‐free NRR catalysts are presented, along with critical issues, challenges, and perspectives concerning metal‐free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions.  相似文献   

15.
The oxygen reduction reaction (ORR) is the cornerstone of various sustainable energy‐conversion technologies. Metal‐free nanocarbon electrocatalysts with competitive activity, enhanced durability, and satisfactory cost, have been proposed as the most promising substitute for precious‐metal catalysts. However, their further development is still primarily based on trial‐and‐error approaches due to the controversial knowledge of critical active sites and mechanisms. Herein, the activity origins of nanocarbon‐based ORR electro­catalysts are comprehensively reviewed and correlated, considering the dopants, edges, and defects. Analogously, they can effectively modify the charge/spin distribution on the sp2‐conjugated carbon matrix, leading to optimized intermediate chemisorption and facilitated electron transfer. Specific doping at defective edges is expected to render practical applications for metal‐free nanocarbon electrocatalysts.  相似文献   

16.
In recent years, significant progress has been achieved in the development of platinum group metal‐free (PGM‐free) oxygen reduction reaction (ORR) catalysts for proton exchange membrane (PEM) fuel cells. At the same time the limited durability of these catalysts remains a great challenge that needs to be addressed. This mini‐review summarizes the recent progress in understanding the main causes of instability of PGM‐free ORR catalysts in acidic environments, focusing on transition metal/nitrogen codoped systems (M‐N‐C catalysts, M: Fe, Co, Mn), particularly MNx moiety active sites. Of several possible degradation mechanisms, demetalation and carbon oxidation are found to be the most likely reasons for M‐N‐C catalysts/cathodes degradation.  相似文献   

17.
Electrocatalysts for oxygen‐reduction and oxygen‐evolution reactions (ORR and OER) are crucial for metal–air batteries, where more costly Pt‐ and Ir/Ru‐based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel‐supported Ni/MnO (Ni–MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni–MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn–air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal–air batteries.  相似文献   

18.
Developing efficient and low‐cost defective carbon‐based catalysts for the oxygen reduction reaction (ORR) is essential to metal–air batteries and fuel cells. Active sites engineering toward these catalysts is highly desirable but challenging to realize boosted catalytic performance. Herein, a sandwich‐like confinement route to achieve the controllable regulation of active sites for carbon‐based catalysts is reported. In particular, three distinct catalysts including metal‐free N‐doped carbon (NC), single Co atoms dispersed NC (Co–N–C), and Co nanoparticles‐contained Co–N–C (Co/Co–N–C) are controllably realized and clearly identified by synchrotron radiation‐based X‐ray spectroscopy. Electrochemical measurements suggest that the Co/Co–N–C catalyst delivers optimized ORR performance due to the rich Co–Nx active sites and their synergistic effect with metallic Co nanoparticles. This work provides deep insight for rationally designing efficient ORR catalyst based on active sites engineering.  相似文献   

19.
Development of highly active and stable Pt‐free oxygen reduction reaction catalysts from earth‐abundant elements remains a grand challenge for highly demanded metal–air batteries. Ag‐based alloys have many advantages over platinum group catalysts due to their low cost, high stability, and acceptable oxygen reduction reaction (ORR) performance in alkaline solutions. Nevertheless, compared to commercial Pt/C‐20%, their catalytic activity still cannot meet the demand of commercialization. In this study, a kind of catalysts screening strategy on Agx Cu100?x nanoalloys is reported, containing the surface modification method, studies of activity enhancement mechanism, and applied research on zinc–air batteries. The results exhibit that the role of selective dealloying (DE) or galvanic displacement (GD) is limited by the “parting limitation”, and this “parting limitation” determines the surface topography, position of d‐band center, and ORR performance of Agx Cu100?x alloys. The GD‐Ag55Cu45 and DE‐Ag25Cu75 catalysts alloys present excellent ORR performance that is comparable to Pt/C‐20%. The relationship between electronic perturbation and specific activity demonstrates that positive shift of the d‐band center (≈0.12 eV, relative to Ag) for GD‐Ag55Cu45 is beneficial for ORR, which is contrary to Pt‐based alloys (negative shift, ≈0.1 eV). Meanwhile, extensive electrochemical and electronic structure characterization indicates that the high work function of GD‐Ag55Cu45 (4.8 eV) is the reason behind their excellent durability for zinc–air batteries.  相似文献   

20.
High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+ and H2O2 generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2 generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号