首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
机器人操作器的自适应模糊滑模控制器设计   总被引:1,自引:0,他引:1  
针对机器人动力学系统提出了一种基于模糊逻辑的自适应模糊滑模控制方案.根据滑模控制原理并利用模糊系统的逼近能力设计控制器,基于李雅谱诺夫方法设计自适应律,证明了闭环模糊控制系统的稳定性和跟踪误差的收敛性.控制结构简单,不需要复杂的运算.该设计方案柔化了控制信号,减轻了一般滑模控制的抖振现象.仿真结果表明了所提控制策略的有效性.  相似文献   

2.
Hydraulic servo control systems have been used widely in industry. Within the realm of hydraulic control systems, conventional hydraulic valve‐controlled systems have higher response and lower energy efficiency, whereas hydraulic displacement‐controlled servo systems have higher energy efficiency. This paper aims to investigate the velocity control performance of an electro‐hydraulic displacement‐controlled system (EHDCS), where the controlled hydraulic cylinder is altered by a variable displacement axial piston pump to achieve velocity control. For that, a novel adaptive fuzzy controller with self‐tuning fuzzy sliding‐mode compensation (AFC‐STFSMC) is proposed for velocity control in EHDCS. The AFC‐STFSMC approach combining adaptive fuzzy control and the self‐tuning fuzzy sliding‐mode control scheme, has the advantages of the capability of automatically adjusting the fuzzy rules and of reducing the fuzzy rules. The proposed AFC‐STFSMC scheme can design the sliding‐mode controller with no requirement on the system dynamic model, and it can be free of chattering, thereby providing stable tracking control performance and robustness against uncertainties. Moreover, the stability of the proposed scheme via the Lyapunov method is proven. Therefore, the velocity control of EHDCS controlled by AFC‐STFSMC is implemented and verified experimentally in different velocity targets and loading conditions. The experimental results show that the proposed AFC‐STFSMC method can achieve good velocity control performance and robustness in EHDCS with regard to parameter variations and external disturbance. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
A stable decentralized adaptive fuzzy sliding mode control scheme is proposed for reconfigurable modular manipulators to satisfy the concept of modular software. For the development of the decentralized control, the dynamics of reconfigurable modular manipulators is represented as a set of interconnected subsystems. A first‐order Takagi–Sugeno fuzzy logic system is introduced to approximate the unknown dynamics of subsystem by using adaptive algorithm. The effect of interconnection term and fuzzy approximation error is removed by employing an adaptive sliding mode controller. All adaptive algorithms in the subsystem controller are derived from the sense of Lyapunov stability analysis, so that resulting closed‐loop system is stable and the trajectory tracking performance is guaranteed. The simulation results are presented to show the effectiveness of the proposed decentralized control scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
对质心位置未知的移动机器人系统设计了基于快速终端滑模的模糊自适应路径跟踪控制方法。该方法采用模糊逻辑系统逼近控制器中的未知函数,基于李亚普诺夫稳定性分析方法对未知参数设计自适应律,并设计鲁棒控制器来补偿逼近误差。该方法不但可以保证闭环系统中的所有信号有界,而且可使跟踪误差在有限时间内收敛到原点的小邻域内。仿真结果验证了方法的有效性。  相似文献   

5.
Adaptive terminal sliding mode control for rigid robotic manipulators   总被引:3,自引:0,他引:3  
In order to apply the terminal sliding mode control to robot manipulators, prior knowledge of the exact upper bound of parameter uncertainties, and external disturbances is necessary. However, this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot. To resolve this problem in robot control, we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators. By applying this adaptive controller, prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances. Also, the proposed controller can eliminate the chattering effect without losing the robustness property. The stability of the control algorithm can be easily verified by using Lyapunov theory. The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.  相似文献   

6.
This paper investigates the robust control for the Euler‐Lagrange (EL) system with input saturation by using the integral sliding mode control and adaptive control. An integral sliding mode surface that is suitable for solving the problem of the input constraint is given based on the saturation function. By using the integral sliding mode surface, two robust antisaturation controllers are designed for the EL system with external disturbances. The first controller can deal with the external disturbances with known bounds, whereas the second one can compensate the external disturbances with unknown bounds by using the adaptive control. Finally, the effectiveness of the proposed controllers is demonstrated by strict theoretical analysis and numerical simulations.  相似文献   

7.
对于不确定的机械手系统,提出一种鲁棒自适应控制方法,用自适应控制来估计系统的未知参数,用终端滑模控制来减少不确定因素的影响,为了避免因干扰的存在使自适应的估计参数发生漂移,引入死区自适应控制.仿真表明,滑模控制不仅抑制了误差,而且消除了死区自适应算法的局限性,该算法在取得较好控制效果的同时,具有很强的鲁棒性.  相似文献   

8.
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.  相似文献   

9.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

10.
基于模糊自适应滑模控制提出了一种拥塞控制算法。该算法通过模糊调节滑模表面使队列跟踪性能得到改善,对于网络模型的不确定性、网络参数的时变性以及非TCP适应流所引起的网络抖动该算法具有很强的鲁棒性。仿真结果表明该方法可以使队列长度快速收敛到设定值,同时使队列震荡最小,结果也表明在网络条件变化的情况下,该算法优于模糊控制和变结构控制。  相似文献   

11.
This paper deals with the design of a robust sliding mode‐based extremum‐seeking controller aimed at the online optimization of a class of uncertain reaction systems. The design methodology is based on an input–output linearizing method with variable‐structure feedback, such that the closed‐loop system converges to a neighborhood of the optimal set point with sliding mode motion. In contrast with previous extremum‐seeking control algorithms, the control scheme includes a dynamic modelling‐error estimator to compensate for unknown terms related with model uncertainties and unmeasured disturbances. The proposed online optimization scheme does not make use of a dither signal or a gradient‐based optimization algorithm. Practical stabilizability for the closed‐loop system around to the unknown optimal set point is analyzed. Numerical experiments for two nonlinear processes illustrate the effectiveness of the proposed robust control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with quantized sliding mode control in the unified delta operator system framework. To solve the quantization measurement saturating problem, a dynamic quantization strategy including discrete on‐line open‐loop zooming‐out and closed‐loop zooming‐in policies is presented. By analyzing the sign relation between the traditional linear switching function and the quantized linear switching function, a novel quantized sliding mode control method is proposed, and both the amplitude of the control gain and the value of the quantization measurement saturating parameter are reduced compared with previous results. Some simulation results are presented to verify the effectiveness of the proposed method.  相似文献   

13.
针对异步电动机(IM)转矩脉动以及抗干扰能力差的问题,设计了基于模糊滑模控制(FSMC)与负载转矩补偿的新型直接转矩控制(DTC),取代传统PID速度调节器的是一种滑模控制器.为解决滑模控制器中负载转矩脉动的问题,用模糊逻辑控制器取代了传统滑模控制律中的不连续部分,可以明显降低异步电动机在低速运转时的转矩脉动.提出了一种负载转矩观测器来估计未知的负载转矩.负载转矩观测器用来估计负载转矩扰动,估计作为速度环的前馈补偿.仿真结果表明:在低速负载转矩扰动时,该设计具有更好的动态响应和速度性能、更高鲁棒性和更强的抗干扰能力.  相似文献   

14.
The problem of compensation of the effects of unmatched uncertainties ∕ perturbations is considered. High‐order sliding mode observers are employed for exact state and uncertainties ∕ perturbations reconstruction. A sliding mode control design is proposed ensuring theoretically exact compensation of the uncertainties ∕ perturbations for the corresponding unmatched states based on the identified perturbation values. An inverted pendulum simulation example is considered illustrating the feasibility of the proposed approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
提出了一种串联机器人的改进控制算法。采用一自适应模糊控制器,根据滑模到达条件对滑模切换增益进行估算,消除滑模控制中输出力矩的抖振现象,增强其对不确定性因素的适应能力。采用另一自适应模糊控制器对指数趋近律系数进行修正,改善由于大范围初始位姿产生的偏差而引起的大力矩和速度跳变问题。该方法无需确定被控对象的具体数学模型,具有强鲁棒性和高跟踪精度。基于Lyapunov方法进行了稳定性证明,保证控制系统的稳定性与收敛性。实验结果表明,该方法应用于串联机器人,跟踪效果良好并产生了平滑的力矩输出和速度输出。  相似文献   

16.
A nonlinear control algorithm for tracking dynamic trajectories using an aerial vehicle is developed in this work. The control structure is designed using a sliding mode methodology, which contains integral sliding properties. The stability analysis of the closed‐loop system is proved using the Lyapunov formalism, ensuring convergence in a desired finite time and robustness toward unknown and external perturbations from the first time instant, even for high frequency disturbances. In addition, a dynamic trajectory is constructed with the translational dynamics of an aerial robot for autonomous take‐off, surveillance missions, and landing. This trajectory respects the constraints imposed by the vehicle characteristics, allowing free initial trajectory conditions. Simulation results demonstrate the good performance of the controller in closed‐loop system when a quadrotor follows the designed trajectory. In addition, flight tests are developed to validate the trajectory and the controller behavior in real time.  相似文献   

17.
针对一类带有未知外部扰动的不确定非线性系统,建立自适应模糊滑模控制器。基于Lyapunov稳定性理论,设计系统可调参数的自适应规则,控制器的设计过程中无需知道系统的具体模型及未知非线性函数的先验知识。数值仿真的结果也验证了该方法的有效性。  相似文献   

18.
In this paper, a disturbance observer–based adaptive boundary layer sliding mode controller (ABLSMC) is proposed to compensate external disturbance and system uncertainty for a class of output coupled multiple‐input multiple‐output (MIMO) nonlinear systems. To show the effectiveness of the proposed ABLMSC, a traditional adaptive sliding mode controller (ASMC) is also designed. The stability of the closed‐loop system is examined by using the Lyapunov stability approach. The proposed control approach is implemented for a class of nonlinear output coupled MIMO systems. For real‐time validation, a coupled tank system is considered for study. Finally, simulation and real‐time results show that the proposed ABLMSC gives better performance such as reduced chattering and energy efficiency than that of the ASMC and some reported works in the literature.  相似文献   

19.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the design of a new adaptive optimization‐based second‐order sliding mode control algorithm for uncertain nonlinear systems. It is designed on the basis of a second‐order sliding mode control with optimal reaching, with the aim of reducing the control effort while maintaining all the positive aspects in terms of finite‐time convergence and robustness in front of matched uncertainties. These features are beneficial to guarantee good performance in case of vehicle dynamics control, a crucial topic in the light of the increasing demand of semiautonomous and autonomous driving capabilities in commercial vehicles. The new proposal is theoretically analyzed, as well as verified relying on an extensive comparative study, carried out on a realistic simulator of a 4‐wheeled vehicle, in the case of a lateral stability control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号