首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zero-inflated Poisson (ZIP) distribution is an extension of the ordinary Poisson distribution and is used to model count data with an excessive number of zeros. In ZIP models, it is assumed that random shocks occur with probability p, and upon the occurrence of random shock, the number of nonconformities in a product follows the Poisson distribution with parameter λ. In this article, we study in more detail the exponentially weighted moving average control chart based on the ZIP distribution (regarded as ZIP-EWMA) and we also propose a double EWMA chart with an upper time-varying control limit to monitor ZIP processes (regarded as ZIP-DEWMA chart). The two charts are studied to detect upward shifts not only in each parameter individually but also in both parameters simultaneously. The steady-state performance and the performance with estimated parameters are also investigated. The performance of the two charts has been evaluated in terms of the average and standard deviation of the run length, and compared with Shewhart-type and CUSUM schemes for ZIP distribution, it is shown that the proposed chart is very effective especially in detecting shifts in p when λ remains in control (IC) and in both parameters simultaneously. Finally, one real example is given to display the application of the ZIP charts on practitioners.  相似文献   

2.
The binomial cumulative sum (CUSUM) chart has been widely used to monitor the fraction nonconforming (p) of a process. It is a powerful procedure for detecting small and moderate p shifts. This article proposes a binomial CUSUM control chart using curtailment technique (Curt_CUSUM chart in short). The new chart is able to improve the overall detection effectiveness while holding the false alarm rate at a specified level. The results of the comparative studies show that, on average, the Curt_CUSUM chart is more effective than the CUSUM chart without curtailment by 30%, in terms of Average Number of Defectives, under different circumstances. The Curt_CUSUM chart can be applied to a 100% inspection as well as a general random sampling inspection.  相似文献   

3.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Nowadays, statistical process control has been widely used to monitor processes in various fields. To monitor processes with a large number of zero observations by control charts, the zero-inflated Poisson (ZIP) model has been adopted. Due to the heterogeneity of each sample in the process, several factors have been taken into account to predict values of two parameters in the ZIP model by risk adjustment. Instead of considering two parameters to be constant directly, risk-adjusted ZIP control charts can provide more reasonable monitoring results than traditional ones. However, existing methods ignored the interaction between parameters in the ZIP model, which leads to some risk-adjusted control charts unable to accurately estimate parameters to provide effective monitoring results. To address this problem, this paper presents a generalize likelihood ratio (GLR) based control chart to better monitor the risk-adjusted ZIP process with EWMA scheme, which can detect the random shift in both parameters efficiently. In the simulation study, the proposed control chart is compared with another two existing control charts and shows superior performance on detecting various types of shifts in parameters. Finally, the proposed control chart is applied to the Hong Kong influenza datasets and the flight delay datasets to illustrate its effectiveness and utility.  相似文献   

5.
Because of the characteristics of a system or process, several prespecified changes may happen in some statistical process control applications. Thus, one possible and challenging problem in profile monitoring is detecting changes away from the ‘normal’ profile toward one of several prespecified ‘bad’ profiles. In this article, to monitor the prespecified changes in linear profiles, two two‐sided cumulative sum (CUSUM) schemes are proposed based on Student's t‐statistic, which use two separate statistics and a single statistic, respectively. Simulation results show that the CUSUM scheme with a single statistic uniformly outperforms that with two separate statistics. Besides, both CUSUM schemes perform better than alternative methods in detecting small shifts in prespecified changes, and become comparable on detecting moderate or large shifts when the number of observations in each profile is large. To overcome the weakness in the proposed CUSUM methods, two modified CUSUM schemes are developed using z‐statistic and studied when the in‐control parameters are estimated. Simulation results indicate that the modified CUSUM chart with a single charting statistic slightly outperforms that with two separate statistics in terms of the average run length and its standard deviation. Finally, illustrative examples indicate that the CUSUM schemes are effective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates control charts for detecting special causes in an ARIMA(0, 1, 1) process that is being adjusted automatically after each observation using a minimum mean‐squared error adjustment policy. It is assumed that the adjustment mechanism is designed to compensate for the inherent variation due to the ARIMA(0, 1, 1) process, but it is desirable to detect and eliminate special causes that occur occasionally and produce additional process variation. It is assumed that these special causes can change the process mean, the process variance, the moving average parameter, or the effect of the adjustment mechanism. Expressions are derived for the process deviation from target for all of these process parameter changes. Numerical results are presented for sustained shifts, transient shifts, and sustained drifts in the process parameters. The objective is to find control charts or combinations of control charts that will be effective for detecting special causes that result in any of these types of parameter changes in any or all of the parameters. CUSUM charts designed for detecting specific parameter changes are considered. It is shown that combinations of CUSUM charts that include a CUSUM chart designed to detect mean shifts and a CUSUM chart of squared deviations from target give good overall performance in detecting a wide range of process changes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers the problem of obtaining robust control charts for detecting changes in the mean µ and standard deviation σ of process observations that have a continuous distribution. The standard control charts for monitoring µ and σ are based on the assumption that the process distribution is normal. However, the process distribution may not be normal in many situations, and using these control charts can lead to very misleading conclusions. Although some control charts for µ can be tuned to be robust to non‐normal distributions, the most critical problem with non‐robustness is with the control chart for σ. This paper investigates the performance of two CUSUM chart combinations that can be made to be robust to non‐normality. One combination consists of the standard CUSUM chart for µ and a CUSUM chart of absolute deviations from target for σ, where these CUSUM charts are tuned to detect relatively small parameter shifts. The other combination is based on using winsorized observations in the standard CUSUM chart for µ and a CUSUM chart of squared deviations from target for σ. Guidance is given for selecting the design parameters and control limits of these robust CUSUM chart combinations. When the observations are actually normal, using one of these robust CUSUM chart combination will result in some reduction in the ability to detect moderate and large changes in µ and σ, compared with using a CUSUM chart combination that is designed specifically for the normal distribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

9.
We evaluate the performance of the Crosier's cumulative sum (C‐CUSUM) control chart when the probability distribution parameters of the underlying quality characteristic are estimated from Phase I data. Because the average run length (ARL) under estimated parameters is a random variable, we study the estimation effect on the chart performance in terms of the expected value of the average run length (AARL) and the standard deviation of the average run length (SDARL). Previous evaluations of this control chart were conducted while assuming known process parameters. Using the Markov chain and simulation approaches, we evaluate the in‐control performance of the chart and provide some quantiles for its in‐control ARL distribution under estimated parameters. We also compare the performance of the C‐CUSUM chart to that of the ordinary CUSUM (O‐CUSUM) chart when the process parameters are unknown. Our results show that large number of Phase I samples are required to achieve a quite reasonable performance. Additionally, the performance of the C‐CUSUM chart is found to be superior to that of the O‐CUSUM chart. Finally, we recommend the use of a recently proposed bootstrap procedure in designing the C‐CUSUM chart to guarantee, at a certain probability, that the in‐control ARL will be of at least the desired value using the available amount of Phase I data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
CCC‐r charts are effective in detecting process shifts in the nonconforming rate especially for a high‐quality process. The implementation of the CCC‐r charts is usually under the assumption that the in‐control nonconforming rate is known. However, the nonconforming rate is never known, and accurate estimation is difficult. We investigate the effect of estimation error on the CCC‐r charts' performances through the expected value of the average number of observations to signal (EANOS) as well as the standard deviation of the average number of observations to signal (SDANOS). By comparing the in‐control performance of the CCC‐r charts, the CCC‐r chart with a larger value of r is more susceptible to the effects of parameter estimation. Meanwhile, the performance of the CCC‐r charts can converge when detecting upward shifts in p of out‐of‐control processes. We recommend the use of the CCC‐4 chart when considering its effectiveness in detecting shifts as well as its easier construction in practice. Furthermore, it is investigated that the CCC‐4 chart is less sensitive to parameter estimation while being more effective in detecting different process shifts when compared with Geometric CUSUM chart and synthetic chart.  相似文献   

12.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Monitoring a fraction arises in many manufacturing applications and also in service applications. The traditional p‐chart is easy to use and design but is difficult to achieve the desired false alarm rate. We propose a two‐sided CUSUM Arcsine method that achieves both large and small desired false alarm rates for an in‐control probability anywhere between 0 and 1. The parameters of the new method are calculated easily, without tables, simulation, or Markov chain analysis used by many of the existing methods. The proposed method detects increases and decreases and works for constant and Poisson distributed sample sizes. The CUSUM Arcsine also has a superior sensitivity compared with other easily designed existing methods for monitoring Binomial distributed data. This paper includes an extensive literature review and a taxonomy of the existing monitoring methods for a fraction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart-CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double-ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run-length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run-length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts.  相似文献   

15.
Zero-inflated Poisson (ZIP) model is very useful in high-yield processes where an excessive number of zero observations exist. This model can be viewed as an extension of the standard Poisson distribution. In this paper, a one-sided generally weighted moving average (GWMA) control chart is proposed for monitoring upward shifts in the two parameters of a ZIP process (regarded as ZIP-GWMA chart). The design parameters of the proposed chart are provided, and through a simulation study, it is shown that the ZIP-GWMA performs better than the existing control charts under shifts in both parameters. Moreover, an illustrative example is presented to display the application of the proposed chart on practitioners.  相似文献   

16.
The CRL (Conforming Run Length) type control charts have attracted increasing interest recently for attribute Statistical Process Control (SPC). The two most promising charts of this type are identified as the CRL‐CUSUM chart and the SCRL (Sum of CRLs) chart. This article compares the operating characteristics of these two charts in a comprehensive manner. The general findings reveal that the CRL‐CUSUM chart excels the SCRL chart in detecting downward (decreasing) fraction nonconforming (p) shifts and large‐scale upward (increasing) p shifts. However, the SCRL chart is superior to the CRL‐CUSUM chart in detecting the small and moderate scale upward p shifts, especially when the normal p value is small. The information acquired in this study will provide Quality Assurance (QA) engineers with useful guidance for selecting and applying the CRL‐type control charts. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The Bernoulli cumulative sum (CUSUM) chart has been shown to be effective for monitoring the rate of nonconforming items in high‐quality processes where the in‐control proportion of nonconforming items (p0) is low. The implementation of the Bernoulli CUSUM chart is often based on the assumption that the in‐control value p0 is known; therefore, when p0 is unknown, accurate estimation is necessary. We recommend using a Bayes estimator to estimate the value of p0 to incorporate practitioner knowledge and to avoid estimation issues when no nonconforming items are observed in phase I. We also investigate the effects of parameter estimation in phase I on the upper‐sided Bernoulli CUSUM chart by using the expected value of the average number of observations to signal (ANOS) and the standard deviation of the ANOS. It is found that the effects of parameter estimation on the Bernoulli CUSUM chart are more significant than those on the Shewhart‐type geometric chart. The low p0 values inherent to high‐quality processes imply that a very large, and often unrealistic, sample size may be needed to accurately estimate p0. A methodology to identify a continuous variable to monitor is highly recommended when the value of p0 is low and the required phase I sample size is impractically large. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The combined application of a Shewhart chart and cumulative sum (CUSUM) control chart is an effective tool for the detection of all sizes of process shifts as the scheme combines the advantages of a CUSUM at detecting small to moderate shifts and Shewhart for the quick detection of very large shifts. This article proposes new combined Shewhart–CUSUM S charts based on the extreme variations of ranked set sampling technique, for efficient monitoring of changes in the process dispersion. Using Monte Carlo simulations, the combined scheme is designed to minimize the average extra quadratic loss over the entire process shift domain. The results show that the combined Shewhart–CUSUM S charts uniformly outperform several other procedures for detecting increases and decreases in the process variability. Moreover, the proposed scheme can detect changes that are small enough to escape the Shewhart S chart or fairly large to escape detection by the CUSUM S chart. Numerical example is given to illustrate the practical application of the proposed scheme using real industrial data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The cumulative sum (CUSUM) chart is a very effective control charting procedure used for the quick detection of small‐sized and moderate‐sized changes. It can detect small process shifts missed by the Shewhart‐type control chart, which is sensitive mainly to large shifts. To further enhance the sensitivity of the CUSUM control chart at detecting very small process disturbances, this article presents CUSUM control charts based on well‐structured sampling procedures, double ranked set sampling, median‐double ranked set sampling, and double‐median ranked set sampling. These sampling techniques significantly improve the overall performance of the CUSUM chart over the entire process mean shift range, without increasing the false alarm rate. The newly developed control schemes do not only dominate most of the existing charts but are also easy to design and implement as illustrated through an application example of real datasets. The control schemes used for comparison in this study include the conventional CUSUM chart, a fast initial response CUSUM chart, a 2‐CUSUM chart, a 3‐CUSUM chart, a runs rules‐based CUSUM chart, the enhanced adaptive CUSUM chart, the CUSUM chart based on ranked set sampling (RSS), and the single CUSUM and combined Shewhart–CUSUM charts based on median RSS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号