首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
为提高转炉生产能力,优化了转炉供氧制度-氧枪枪位和加料模式,不同铁水Si含量所对应的基础石灰、白云石量和底吹工艺,控制出钢温度,使转炉终点目标一次命中率从89.5%提高到95.4%,减少补吹次数;平均终点[N]降至35×10-6;通过钢包的良性周转和出钢时间的合理控制,使钢包进入精炼工位后钢水温度≥1 560℃。  相似文献   

3.
以副枪系统和二级冶金模型为基础,通过优化原材料条件,建立转炉加料、底吹搅拌和供氧等吹炼过程自动控制工艺,以及优化系统操作参数和模型参数等措施,实现了180t转炉自动化炼钢,转炉出钢命中率由25%提高到83%以上,且吹炼过程稳定,转炉生产周期缩短了4min,终渣全铁质量分数平均降低了2.4%,提高了转炉炼钢的金属收得率。  相似文献   

4.
通过对转炉脱磷和碳-磷选择性氧化转变温度的理论分析和计算,在铁水未经脱磷预处理的条件下,进行120 t顶底复吹转炉双渣脱磷生产实践。当铁水平均成分为(/%):4.81C、0.49Si、0.32Mn、0.127P、0.019S的情况下,在转炉冶炼前期(0~360 s),采用低温(1 330~1 350℃),较强底吹搅拌[0.030~0.040 m~3/(t·min)],中等炉渣碱度(2.0~3.0)和高氧化铁(20%~25%)工艺措施,实现一次倒渣的半钢(3.8%C)平均磷含量0.048%和平均脱磷率62.2%的脱磷效果。  相似文献   

5.
Mathematical modeling of stainless steelmaking in an AOD (argon‐oxygen decarburisation) converter with side and top combined blowing has been preliminarily investigated. The actual situations of the side and top combined blowing AOD process were analysed. A mathematical model for the whole refining process of stainless steel has been proposed and developed. The model is based on the assumption that one part of the oxygen blown through a top lance reacts with CO escaping from the bath, another part of the oxygen oxidizes the elements in the molten steel droplets splashed by the oxygen jet, and the remaining oxygen penetrates and dissolves into the molten steel through the pit stroked by the jet. All the oxygen entering into the bath oxidizes C, Cr, Si, and Mn dissolved in the steel and also the Fe of the steel melt, but the FeO generated is also an oxidant of C, Cr, Si, and Mn in the steel. During the process, all possible oxidation‐reduction reactions occur simultaneously and reach their equilibria, respectively their combined equilibrium, in competition at the liquid/bubble and liquid/slag interfaces. In the simple side blowing after the top blowing operation is finished, the possible reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. The overall decarburization rate in the refining process is the sum of the contributions of both the top and side blowing processes. It is also assumed that at high carbon concentrations, the oxidation rates of elements are mainly dependent upon the supplied oxygen rate, and at low carbon contents, the rate of decarburisation is primarily related to the mass transfer of carbon from the molten steel bulk to the interface. It is further assumed that the non‐reacting oxygen blown into the bath does not accumulate in the steel and will escape from the bath and react with CO in the atmosphere above the bath. The study presents calculations of the refining rate and the mass and heat balances of the system for the whole process. Additionally, the influences of the operating factors, including addition of slag materials, scrap, and alloy agents, the non‐isothermal conditions, the changes in the amounts of metal and slag during the whole refining process, and others have all been considered.  相似文献   

6.
杨利彬  焦兴利  贺庆  刘浏 《特殊钢》2011,32(6):40-42
X80管线钢(基本成分/%:0.09C、0.42Si、1.85Mn、0.022P、0.005S、0.06Als)的冶金流程为KR铁水脱硫预处理-300 t顶底复吹转炉-钢包吹氩-LF-RH-250 mm×2 150 mm板坯连铸。工艺炼钢和精炼主要优化工艺为:控制转炉出钢下渣量≤4 kg/t,采用(%):55~60CaO、7~12SiO2、25~30Al2O3精炼渣系,控制LF精炼渣CaO/Al2O3=1.7~1.9,CaO/SiO2=4.5~6.0,(FeO+MnO)≤1.0%,吹氩站顶底吹氩预成渣,RH真空度≤66.7 Pa,RH后喂钙线0.8 kg/t。结果表明,转炉终点碳氧积由0.002 84降为0.002 44;精炼后(FeO+MnO)为0.913%,全氧含量为0.0013%。成品材夹杂物级别≤1.0。  相似文献   

7.
低锰钢一般要求控制转炉终点[Mn]≤0.05%,针对传统双渣工艺熔剂消耗成本高,留渣双渣工艺去锰不稳定的问题,基于热力学、动力学分析和现场数据分析,研究了碱度炉渣(R 1.68~2.00)、温度(1340~1460℃)及渣中FeO含量(FeO)(15.5%~18.7%)对留渣双渣工艺中炉渣去锰能力的影响。通过溅渣留渣期间加入部分石灰石,吹炼开始加入少量生白云石替代部分轻烧白云石和加入少量萤石以及吹炼初期采用较高枪位,加强熔池上层炉渣搅拌加速初期锰的氧化等措施,使终点[Mn]由≤0.06%降至≤0.045%,与传统双渣法比较,减少石灰用量6.5 kg/t,减少萤石1.48 kg/t,铁皮单耗降低6.42 kg/t,明显降低冶炼熔剂成本。  相似文献   

8.
Through systematical physical simulation of powder injection process in a torpedo‐car, the influences of operation parameters on process variables such as uniform mixing time, powder penetration ratio and residence time are determined. The relationships between the operation parameters and the process variable are obtained using linear regression method. Finally, the optimum operation parameters for powder injection are found using multi‐objective nonlinear programming method.  相似文献   

9.
Considering that the liquid flow field under the conditions of the combined side and top blowing would be a combined result from the common action of the side blowing gas streams and a gas top blowing jet, as the first attempt, the three‐dimensional mathematical models for the flows of molten steel in an AOD converter bath during the simple side and top blowing processes have been proposed and developed, respectively. And the mathematical model of the flow in the bath during the combined blowing AOD refining process of stainless steel has been given by the composition and superposition of the two models. In the composed model, the gas‐liquid two‐phase flow is described and treated in terms of the two‐fluid (Eulerian‐Eulerian) model. The especially modified two‐equation k?ε model for the turbulence in the liquid phase is employed. And, the surface of the sunken pit formed by impact of the gas jet blown from a top lance at the central location of the bath liquid surface is regarded as a revolution paraboloid. The related details of the composed model are shown.  相似文献   

10.
11.
3D calculations with Computational Fluid Dynamics were carried out to evaluate the flow pattern under industrial conditions with different gas flow rates at the steel plant of Saarstahl AG. The generated flow pattern consists of a circulating loop characterised by an upward flow driven by the argon gas and a downward flow close to the wall on the opposite side of the porous plug in the case of a gas flow rate of 27 STP m3/h. When this high gas flow rate is used, the gas bubbles are taking a straight way from the inlet, but further up the momentum from the circulating steel is affecting the path of the gas bubbles followed by a breakthrough zone at the top surface. Intensive experiments with the 170‐t ladle of Saarstahl AG revealed typical open‐eyes. Large open‐eyes coupled with turbulences in the surface were generated in the case of gas flow rates between 20 and 30 STP m3/h. Intensive turbulences and even smoke formation were identified when a gas flow rate of > 30 STP m3/h was applied. For the investigation of the influence of gas stirring processes on the mixing phenomena samples were taken from the melt immediately after alloying. It could be seen that the analyses of Al, C, Mn and Si increased to the target analyses due to alloying and introduction of Ar through the porous plug. The total time for complete alloying depended on the elements within these experiments. It seemed to be that the alloying time increased in the order of Al, C, Mn and Si. For on‐line control and analysis of open‐eyes in the melt surface during ladle stirring, a BFI image processing system was installed at the steel plant of Saarstahl. It consisted of a conventional digital camera equipped with an infrared filter and coupled to an image processing software. Primary tests showed a slight influence of the open‐eye diameter at the end of the ladle treatment on inclusion densities in the liquid steel and oxidic K0 values of the finished wire rod. Additional experiments were performed but only a small correlation existed between the stirring energy at the end of ladle treatment and the inclusion length index of the applied blue brittle tests. But as soon as an open‐eye came into existence, the inclusion length was higher compared to those heats produced under a closed top slag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号