首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we introduce a method for monitoring the Weibull shape parameter β with type II (failure) censored data. The control limits depend on the sample size, the number of censored observations, the target average run length, and the stable value of β. The method assumes that the scale parameter α is constant during each sampling period, which is true under rational subgrouping. The proposed method utilizes the relationship between Weibull and smallest extreme value distribution. We propose an unbiased estimator of σ = 1/β as the monitoring statistic. We derive the control limits for one‐sided and two‐sided charts for several stable process average run lengths. We discuss two schemes, namely, the control‐limits‐only scheme and the control‐limits‐with‐warning‐lines scheme. The stable process average run length performance of the proposed charts is studied and compared with those of other charts for monitoring β under similar assumptions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a new statistic is proposed to monitor the Weibull shape parameter when the sample is type II censored. The one‐sided and two‐sided average run length‐unbiased control charts are derived based on the new monitoring statistic. The control limits of the proposed control charts depend on the sample size, the failure number and the false alarm rate. Using Monte Carlo simulation, the performance of the proposed control charts is studied and compared with the range‐based charts proposed by Pascual and Li (2012), which is equivalent to the proposed control charts when r = 2. The simulation results show that the proposed control charts perform better than the ones of Pascual and Li (2012). This paper also evaluates the effects of parameter estimation on the proposed control charts. Finally, an example is used to illustrate the proposed control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we propose control charts for the quantiles of the Weibull distribution, for type II censored data, based on the distribution of a pivotal quantity conditioned on ancillary statistics. These control charts must be considered as alternatives to bootstrap type control charts. We derive an analytical form of the conditional distribution function of the monitored statistic and we use this function to propose ARL‐unbiased control limits. We further demonstrate that the proposed conditional chart have a general analytical form for the ARL that can be evaluated numerically without use of simulations and we also show that these charts perform at least as well as the bootstrap type ones. We finally apply the conditional charts to a dataset on the strength of carbon fibers to detect shifts in a specified Weibull quantile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we propose control charts for monitoring changes in the Weibull shape parameter β. These charts are based on the range of a random sample from the smallest extreme value distribution. The control chart limits depend only on the sample size, the desired stable average run length (ARL), and the stable value of β. We derive control limits for both one‐ and two‐sided control charts. They are unbiased with respect to the ARL. We discuss sample size requirements if the stable value of βis estimated from past data. The proposed method is applied to data on the breaking strengths of carbon fibers. We recommend one‐sided charts for detecting specific changes in βbecause they are expected to signal out‐of‐control sooner than the two‐sided charts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, (i) we propose new conditional Shewhart‐type control charts for monitoring the shape parameter of the Weibull distribution under a progressively type II censoring strategy, and (ii) we generalize the control charts proposed by Guo and Wang1 for the progressively type II censoring case. We provide a comparison between these control charts in terms of the out‐of‐control average run length obtained by simulation for both the known and unknown parameter cases. A real example consisting of data from breaking stress of carbon fibers is also presented for illustration and comparison of the proposed control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we develop a Bayesian approach for monitoring Weibull quantiles under Type II censoring when prior information is negligible relative to the data. The posterior median of quantiles is considered as the monitored statistic. A method based on the relationship between Bayesian and conditional limits under an appropriate prior distribution is proposed to obtain the posterior median of quantiles in closed form. A pivotal quantity based on the monitored statistic is proposed, and its distribution is conditionally derived. Then, the Bayes‐conditional control limits are proposed. For the proposed charts, the probability of out‐of‐control can be derived without use of simulation. The performance of the Bayes‐conditional charts is compared with the bootstrap charts through the simulation methods. The results show that to monitor the first quantiles, the lower‐sided Bayes‐conditional charts perform better than bootstrap charts in detecting a downward shift caused by decreasing in the shape parameter. Finally, an illustrative example is provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes an approach to monitor shifts in the Weibull shape parameter bfβ via control charts based on the moving range of single‐point samples from a smallest extreme value distribution. The average run length (ARL) of the proposed charts are computed using Fredholm integral equations of the second kind. The derived control limits for one‐sided and two‐sided control charts are unbiased in the sense that the ARL when β has shifted is shorter than the desired stable‐process ARL. These control limits depend only on the desired stable‐process ARL and the stable value of β. The paper also discusses the sample size requirements for Phase I so that the run length distributions are similar under standards‐given scenario (β is given) and retrospective scenario (β is estimated from past data). The proposed methods are then applied to data on the breaking strengths of carbon fibers. The results suggest that one‐sided control charts can detect small shifts in β sooner than two‐sided charts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, we study exponentially weighted moving average (EWMA) charts for monitoring Weibull quantiles (percentiles) based on a monitoring statistic conditioned on ancillary statistics when samples may be Type II censored. The monitoring statistic has a distribution form that is intractable, but analytic forms of the density and distribution functions can be derived when it is conditioned on ancillary statistics. We use these results to develop EWMA control charts and, in certain cases, evaluate their average run length without resorting to simulations. We compare the average run length performance of the EWMA charts with those of probability‐limit charts, studied by the authors, and probability‐limit charts enhanced with Western Electric alarm rules. We apply the charts to the breaking strength of carbon fibers to detect shifts in a specific Weibull quantile. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA‐type charts good at detecting small disturbances in the process. This article proposes two new memory control charts for monitoring process dispersion, named as floating T ? S2 and floating U ? S2 control charts, respectively. The average run length (ARL) performance of the proposed charts is evaluated through a simulation study and is also compared with the CUSUM and EWMA charts for process dispersion. It is found that the proposed charts are better in detecting both positive as well as negative shifts. An additional comparison shows that the floating U ? S2 chart has slightly smaller ARLs for larger shifts, while for smaller shifts, the floating T ? S2 chart has better performance. An example is also provided which shows the application of the proposed charts on simulated datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Type II Errors of Demerit Control Charts   总被引:1,自引:0,他引:1  
Complex products may present more than one type of defect. A demerit control chart is a useful tool for monitoring different types of defects in a single chart while taking into account different levels of severity. Traditionally, control limits have been established based on standard deviations from the centerline assuming normality. These limits were improved upon by approaches to finding the exact distribution of the demerit statistic and establishing probability-based limits. With respect to Type I error, probability-based limits have been shown to outperform traditional limits. Now, again with exact distributions, we consider Type II errors as well when establishing control limits for different shifts, means and weights.  相似文献   

14.
Exponentially weighted moving average (EWMA) control charts have received considerable attention for detecting small changes in the process mean or the process variability. Several EWMA control charts are constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring changes in the process dispersion. In this paper, we propose new EWMA control charts for monitoring process dispersion based on the best linear unbiased absolute estimators obtained under simple random sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA‐SRS and EWMA‐RSS control charts. The performance of the proposed EWMA control charts is evaluated in terms of the average run length and standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control charts are then compared with their existing counterparts for detecting increases and decreases in the process dispersion. It turns out that the EWMA‐RSS control chart performs uniformly better than its analogues for detecting overall changes in process dispersion. Moreover, the EWMA‐SRS chart significantly outperforms the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain the construction and operations of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are potentially powerful process monitoring tool because of their excellent speed in detecting small to moderate shifts in the process parameters. These control charts can be further improved by integrating them with the conforming run length control chart, resulting in the synthetic CUSUM (SynCUSUM) and synthetic EWMA (SynEWMA) charts. In this paper, we enhance the detection abilities of the SynCUSUM and SynEWMA charts using the auxiliary information. With suitable assumptions, the proposed control charts encompass the existing SynCUSUM, SynEWMA, CUSUM, and EWMA charts. Extensive Monte Carlo simulations are used to study the run length profiles of the proposed control charts. It turns out that the proposed near‐optimal control charts with the auxiliary information perform uniformly and substantially better than the existing near‐optimal SynCUSUM, SynEWMA, CUSUM, and EWMA charts. The proposed and existing control charts are also illustrated with the help of an example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Residual control charts are acknowledged to be effective tools for statistical process control of multistage processes. In these monitoring procedures, the models on the stage‐wise correlation should be first derived before the control charts are implemented. Therefore, the monitoring performance is inevitably affected by the model fitting scheme. Most of the previous works are under the assumption that the derived models represent the process behavior perfectly. Far less is known about the effects of the model inaccuracy on the monitoring performance. To investigate the effects of the underlying models on the monitoring performance, residual control charts based on two different modeling schemes are compared in this paper. The results indicate that the charting performance is correlated with the model fitting schemes. That is, a more accurate model will significantly increase the detection power and decrease the false alarm rate as well. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we consider the conditional performance of the equal‐tailed and average run lengths (ARL)‐unbiased two‐sided S2 charts when the in‐control variance of a normal process is estimated. We derive the exact probability distributions of the conditional ARL for the two S2 charts. Then we evaluate the performance of each S2 chart in terms of the percentiles, mean and standard deviation of the conditional in‐control ARL distribution. Because the parameter estimation seriously affects the conditional performance of these S2 charts, we propose an exact method to design the equal‐tailed and ARL‐unbiased S2 charts with desired conditional in‐control performance. The results indicate that the new ARL‐unbiased S2 chart has far smaller standard deviation ARL values and the unconditional ARL values are more close to the desired value than the corresponding new equal‐tailed S2 chart. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts have found extensive applications in industry. The sensitivity of these quality control schemes can be increased by using fast initial response (FIR) features. In this paper, we introduce some improved FIR features for EWMA and CUSUM control charts and evaluate their performance in terms of average run length. We compare the proposed FIR‐based EWMA and CUSUM control schemes with some existing control schemes, that is, EWMA, FIR‐EWMA, CUSUM, and FIR‐CUSUM. It is noteworthy that the proposed control schemes are uniformly better than the other schemes considered here. An illustrative example is also given to demonstrate the implementation of the proposed control schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper compares two control charts: Tukey (TCC) and individual/moving range (XmR) control charts. Both are designed to examine single observation per time period, but little is known about which one is more efficient and under what conditions. We simulated data from different distributions and examined the performance of the two control charts on these data. Performance was assessed using the of average run length, extra quadratic loss, median run length, standard deviation run length, performance comparison index, and relative average run length. Overall, TCC was more efficient than XmR, when observations had binomial, Rayleigh, logistic, lognormal, Maxwell, normal, Poisson, Weibull (with α = 10, β = 1), and Student's t (30 and 10 degrees of freedom) distributions. XmR was more efficient when observations had Student's t (with 4 degrees of freedom) and gamma (with α = 4, β = 1) distributions. These results suggest that improvement teams could reach faster conclusions if they use TCC in most common situations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号