首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of small interfering RNA (siRNA)‐based RNA interference (RNAi) for cancer gene therapy has attracted great attention. Gene therapy is a promising strategy for cancer treatment because it is relatively non‐invasive and has a higher therapeutic specificity than chemotherapy. However, without the use of safe and efficient carriers, siRNAs cannot effectively penetrate the cell membranes and RNAi is impeded. In this work, cationic poly(lactic acid) (CPLA)‐based degradable nanocapsules (NCs) are utilized as novel carriers of siRNA for effective gene silencing of pancreatic cancer cells. These CPLA‐NCs can readily form nanoplexes with K‐Ras siRNA and over 90% transfection efficiency is achieved using the nanoplexes. Cell viability studies show that the nanoparticles are highly biocompatible and non‐toxic, indicating that CPLA‐NC is a promising potential candidate for gene therapy in a clinical setting.  相似文献   

2.
Lipopolymer 49, a solid‐phase synthesized T‐shaped peptide‐like oligoamide containing two central oleic acids, 20 aminoethane, and two terminal cysteine units, is identified as very potent and biocompatible small interfering RNA (siRNA) carrier for gene silencing in glioma cells. This carrier is combined with a novel targeting polymer 727, containing a precise sequence of Angiopep 2 targeting peptide, linked with 28 monomer units of ethylene glycol, 40 aminoethane, and two terminal cysteines in siRNA complex formation. Angiopep‐polyethylene glycol (PEG)/siRNA polyplexes exhibit good nanoparticle features, effective glioma‐targeting siRNA delivery, and intracellular siRNA release, resulting in an outstanding gene downregulation both in glioma cells and upon intravenous delivery in glioma model nude mice without significant biotoxicity. Therefore, this novel siRNA delivery system is expected to be a promising strategy for targeted and safe glioma therapy.  相似文献   

3.
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half‐life and poor water solubility. Nanotechnology‐based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic‐co‐glycolic acid) (PLGA)‐based polymeric oil‐cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico‐chemical properties, and shelf‐life stability. The results indicate that castor oil‐cored PLGA‐based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin‐loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non‐PEGylated NC, and accumulates in the subcutaneous CT26‐tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer.  相似文献   

4.
The ability of diamond nanoparticles (nanodiamonds, NDs) to deliver small interfering RNA (siRNA) into Ewing sarcoma cells is investigated with a view to the possibility of in-vivo anticancer nucleic-acid drug delivery. siRNA is adsorbed onto NDs that are coated with cationic polymer. Cell uptake of NDs is demonstrated by taking advantage of the NDs' intrinsic fluorescence from embedded color-center defects. Cell toxicity of these coated NDs is shown to be low. Consistent with the internalization efficacy, a specific inhibition of EWS/Fli-1 gene expression is shown at the mRNA and protein level by the ND-vectorized siRNA in a serum-containing medium.  相似文献   

5.
It is generally believed that intravenous application of cationic vectors is limited by the binding of abundant negatively charged serum components, which may cause rapid clearance of the therapeutic agent from the blood stream. However, previous studies show that systemic delivery of cationic gene vectors mediates specific and efficient transfection within the lung, mainly as a result of interaction of the vectors with serum proteins. Based on these findings, a novel and charge‐density‐controllable siRNA delivery system is developed to treat lung metastatic cancer by using cationic bovine serum albumin (CBSA) as the gene vector. By surface modification of BSA, CBSA with different isoelectric points (pI) is synthesized and the optimal cationization degree of CBSA is determined by considering the siRNA binding and delivery ability, as well as toxicity. The CBSA can form stable nanosized particles with siRNA and protect siRNA from degradation. CBSA also shows excellent abiliies to intracellularly deliver siRNA and mediate significant accumulation in the lung. When Bcl2‐specific siRNA is introduced to this system, CBSA/siRNA nanoparticles exhibit an efficient gene‐silencing effect that induces notable cancer cell apoptosis and subsequently inhibits the tumor growth in a B16 lung metastasis model. These results indicate that CBSA‐based self‐assembled nanoparticles can be a promising strategy for a siRNA delivery system for lung targeting and metastatic cancer therapy.  相似文献   

6.
Effective drug delivery systems that can systematically and selectively transport payloads to disease cells remain a challenge. Here, a targeting ligand‐modified DNA origami nanostructure (DON) as an antibody–drug conjugate (ADC)‐like carrier for targeted prostate cancer therapy is reported. Specifically, DON of six helical bundles is modified with a ligand 2‐[3‐(1,3‐dicarboxy propyl)‐ureido] pentanedioic acid (DUPA) against prostate‐specific membrane antigen (PSMA), to serve as the antibody for drug conjugation in ADC. Doxorubicin (Dox) is then loaded to DON through intercalation to dsDNA. This platform features in spatially controllable organization of targeting ligands and high drug loading capacity. With this nanocomposite, selective delivery of Dox to the PSMA+ cancer cell line LNCaP is readily achieved. The consequent therapeutic efficacy is critically dependent on the numbers of targeting ligand assembled on DON. This target‐specific and biocompatible drug delivery platform with high maximum tolerated doses shows immense potential for developing novel nanomedicine.  相似文献   

7.
A pulmonary codelivery system that can simultaneously deliver doxorubicin (DOX) and Bcl2 siRNA to the lungs provides a promising local treatment strategy for lung cancers. In this study, DOX is conjugated onto polyethylenimine (PEI) by using cis‐aconitic anhydride (CA, a pH‐sensitive linker) to obtain PEI‐CA‐DOX conjugates. The PEI‐CA‐DOX/siRNA complex nanoparticles are formed spontaneously via electrostatic interaction between cationic PEI‐CA‐DOX and anionic siRNA. The drug release experiment shows that DOX releases faster at acidic pH than at pH 7.4. Moreover, PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles show higher cytotoxicity and apoptosis induction in B16F10 cells than those treated with either DOX or Bcl2 siRNA alone. When the codelivery systems are directly sprayed into the lungs of B16F10 melanoma‐bearing mice, the PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles exhibit enhanced antitumor efficacy compared with the single delivery of DOX or Bcl2 siRNA. Compared with systemic delivery, most drug and siRNA show a long‐term retention in the lungs via pulmonary delivery, and a considerable number of the drug and siRNA accumulate in tumor tissues of lungs, but rarely in normal lung tissues. The PEI‐CA‐DOX/Bcl2 siRNA complex nanoparticles are promising for the treatment of metastatic lung cancer by pulmonary delivery with low side effects on the normal tissues.  相似文献   

8.
With the recent FDA approval of the first siRNA‐derived therapeutic, RNA interference (RNAi)‐mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA‐mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.  相似文献   

9.
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Small interfering RNA (siRNA) holds promise as a new class of therapeutics for HCC, as it can achieve sequence‐specific gene knockdown with low cytotoxicity. However, the main challenge in the clinical application of siRNA lies in the lack of effective delivery approaches that need to be highly specific and thus incur low or no systemic toxicity. Here, a nonviral nanoparticle‐based gene carrier is presented that can specifically deliver siRNA to HCC. The nanovector (NP‐siRNA‐GPC3 Ab) is made of an iron oxide core coated with chitosan‐polyethylene glycol (PEG) grafted polyethyleneimine copolymer, which is further functionalized with siRNA and conjugated with a monoclonal antibody (Ab) against human glypican‐3 (GPC3) receptor highly expressed in HCC. A rat RH7777 HCC cell line that coexpresses human GPC3 and firefly luciferase (Luc) is established to evaluate the nanovector. The nanoparticle‐mediated delivery of siRNA against Luc effectively suppresses Luc expression in vitro without notable cytotoxicity. Significantly, NP‐siLuc‐GPC3 Ab administered intravenously in an orthotopic model of HCC is able to specifically bound to tumor and induce remarkable inhibition of Luc expression. The findings demonstrate the potential of using this nanovector for targeted delivery of therapeutic siRNA to HCC.  相似文献   

10.
Engineering Nanocarriers for siRNA Delivery   总被引:1,自引:0,他引:1  
The discovery of RNA interference has revitalized the long ongoing pursuit of gene therapy for the treatment of diseases. Nevertheless, despite promising results from experimental studies, there remains a pressing need for the development of nanocarriers that are clinically-relevant, biocompatible, efficient, and that can be tailored to specific disease targets. This review surveys the broad spectrum of nanomaterials and their functional add-ons, and aims to provide a guide towards engineering nanocarriers for effective siRNA delivery.  相似文献   

11.
Semiconductor organic?inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low‐cost fabrication. The CP‐based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution‐processability of CPs, combined with high electron mobility and size‐dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP?NC nanocomposite possessing a well‐defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP?NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP?NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field.  相似文献   

12.
Small interfering RNA (siRNA) offers a highly selective and effective pharmaceutical for various life‐threatening diseases, including cancers. The clinical translation of siRNA is, however, challenged by its short plasma life, poor cell uptake, and cumbersome intracellular trafficking. Here, cNGQGEQc peptide‐functionalized reversibly crosslinked chimaeric polymersomes (cNGQ/RCCPs) is shown to mediate high‐efficiency targeted delivery of Polo‐like kinase1 specific siRNA (siPLK1) to orthotopic human lung cancer in nude mice. Strikingly, siRNA is completely and tightly loaded into the aqueous lumen of the polymersomes at an unprecedentedly low N/P ratio of 0.45. cNGQ/RCCPs loaded with firefly luciferase specific siRNA (siGL3) or siPLK1 are efficiently taken up by α3β1‐integrin‐overexpressing A549 lung cancer cells and quickly release the payloads to the cytoplasm, inducing highly potent and sequence‐specific gene silencing in vitro. The in vivo studies using nude mice bearing orthotopic A549 human lung tumors reveal that siPLK1‐loaded cNGQ/RCCPs boost long circulation, superb tumor accumulation and selectivity, effective suppression of tumor growth, and significantly improved survival time. These virus‐mimicking chimaeric polymersomes provide a robust and potent platform for targeted cancer siRNA therapy.  相似文献   

13.
T cells help regulate immunity, which makes them an important target for RNA therapies. While nanoparticles carrying RNA have been directed to T cells in vivo using protein‐ and aptamer‐based targeting ligands, systemic delivery to T cells without targeting ligands remains challenging. Given that T cells endocytose lipoprotein particles and enveloped viruses, two natural systems with structures that can be similar to lipid nanoparticles (LNPs), it is hypothesized that LNPs devoid of targeting ligands can deliver RNA to T cells in vivo. To test this hypothesis, the delivery of siRNA to 9 cell types in vivo by 168 nanoparticles using a novel siGFP‐based barcoding system and bioinformatics is quantified. It is found that nanomaterials containing conformationally constrained lipids form stable LNPs, herein named constrained lipid nanoparticles (cLNPs). cLNPs deliver siRNA and sgRNA to T cells at doses as low as 0.5 mg kg?1 and, unlike previously reported LNPs, do not preferentially target hepatocytes. Delivery occurs via a chemical composition‐dependent, size‐independent mechanism. These data suggest that the degree to which lipids are constrained alters nanoparticle targeting, and also suggest that natural lipid trafficking pathways can promote T cell delivery, offering an alternative to active targeting approaches.  相似文献   

14.
Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at‐site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I‐NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I‐NM@siRNA nanomedicine demonstrates effective at‐site siRNA release resulting from tumoral reactive oxygen species (ROS)‐triggered sequential destabilization. Furthermore, the utility of 3I‐NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I‐NM@siRNA nanomedicine with angiopep‐2 peptide is enhanced. The targeted Ang‐3I‐NM@siRNA exhibits superb blood–brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo‐like kinase 1 and vascular endothelial growth factor receptor‐2, Ang‐3I‐NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple‐interaction stabilization together with inbuilt self‐destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.  相似文献   

15.
Small interfering RNAs (siRNAs) directed against proinflammatory cytokines have the potential to treat numerous diseases associated with intestinal inflammation; however, the side-effects caused by the systemic depletion of cytokines demands that the delivery of cytokine-targeted siRNAs be localized to diseased intestinal tissues. Although various delivery vehicles have been developed to orally deliver therapeutics to intestinal tissue, none of these strategies has demonstrated the ability to protect siRNA from the harsh environment of the gastrointestinal tract and target its delivery to inflamed intestinal tissue. Here, we present a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can localize orally delivered siRNA to sites of intestinal inflammation, and thus inhibit gene expression in inflamed intestinal tissue. TKNs are formulated from a polymer, poly-(1,4-phenyleneacetone dimethylene thioketal), that degrades selectively in response to reactive oxygen species (ROS). Therefore, when delivered orally, TKNs release siRNA in response to the abnormally high levels of ROS specific to sites of intestinal inflammation. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with siRNA against the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) diminish TNF-α messenger RNA levels in the colon and protect mice from ulcerative colitis.  相似文献   

16.
The combination of camptothecin (CPT) and fluoropyrimidine derivatives acts synergistically at a 1:1 molar ratio. Practically, the greatest challenge is the development of a single liposomal formulation that can both encapsulate and maintain this drug combination at an exact 1:1 ratio to achieve coordinated pharmacokinetics. Consequently, a new type of liposome‐like nanocapsule (NC) is developed from a highly symmetric Janus camptothecin–floxuridine conjugate (JCFC) amphiphile, which is synthesized by coupling two hydrophobic CPT molecules and two hydrophilic floxuridine (FUDR) molecules to multivalent pentaerythritol via a hydrolyzable ester linkage. JCFC NCs possess remarkably high drug‐loading contents, and no premature release because of the highly stable co‐delivery of the drug combination without the need for any carrier. It is shown that JCFC NCs consistently provide synergy and avoid antagonism in a broad panel of tumor cell lines. In vivo delivery of JCFC NCs leads to longer blood retention half‐life, higher tumorous accumulation and cellular uptake of drugs, and greatly enhanced efficacy in murine tumor models compared to CPT, FUDR, and CPT + FUDR. This liposomal strategy can be extended to other hydrophilic and hydrophobic anticancer drugs that are coupled to pentaerythritol to self‐assemble into nanocapsules for drug self‐delivery, pointing to potential clinical translation in near future.  相似文献   

17.
Drug resistance is the greatest challenge in clinical cancer chemotherapy. Co‐delivery of chemotherapeutic drugs and siRNA to tumor cells is a vital means to silence drug resistant genes during the course of cancer chemotherapy for an improved chemotherapeutic effect. This study aims at effective co‐delivery of siRNA and anticancer drugs to tumor cells. A ternary block copolymer PEG‐PAsp(AED)‐PDPA consisting of pH‐sensitive poly(2‐(diisopropyl amino)ethyl methacrylate) (PDPA), reduction‐sensitive poly(N‐(2,2′‐dithiobis(ethylamine)) aspartamide) PAsp(AED), and poly(ethylene glycol) (PEG) is synthesized and assembled into a core‐shell structural micelle which encapsulated doxorubicin (DOX) in its pH‐sensitive core and the siRNA‐targeting anti‐apoptosis BCL‐2 gene (BCL‐2 siRNA) in a reduction‐sensitive interlayer. At the optimized size and zeta potential, the nanocarriers loaded with DOX and BCL‐2 siRNA may effectively accumulate in the tumor site via blood circulation. Moreover, the dual stimuli‐responsive design of micellar carriers allows microenviroment‐specific rapid release of both DOX and BCL‐2 siRNA inside acidic lysosomes with enriched reducing agent, glutathione (GSH, up to 10 mm ). Consequently, the expression of anti‐apoptotic BCL‐2 protein induced by DOX treatment is significantly down‐regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV‐3 cells and thus dramatically inhibited tumor growth.  相似文献   

18.
Nanocavities composed of lipids and block polymers have demonstrated great potential in biomedical applications such as sensors, nanoreactors, and delivery vectors. However, it remains a great challenge to produce nanocavities from fluorescent semiconducting polymers owing to their hydrophobic rigid polymer backbones. Here, we describe a facile, yet general strategy that combines photocrosslinking with nanophase separation to fabricate multicolor, water‐dispersible semiconducting polymer nanocavities (PNCs). A photocrosslinkable semiconducting polymer is blended with a porogen such as degradable macromolecule to form compact polymer dots (Pdots). After crosslinking the polymer and removing the porogen, this approach yields semiconducting polymer nanospheres with open cavities that are tunable in diameter. Both small molecules and macromolecules can be loaded in the nanocavities, where molecular size can be differentiated by the efficiency of the energy transfer from host polymer to guest molecules. An anticancer drug doxorubicin (Dox) is loaded into the nanocavities and the intracellular release is monitored in real time by the fluorescence signal. Finally, the efficient delivery of small interfering RNA (siRNA) to silence gene expression without affecting cell viability is demonstrated. The combined features of bright fluorescence, tunable cavity, and efficient drug/siRNA delivery makes these nanostructures promising for biomedical imaging and drug delivery.  相似文献   

19.
The abilities to deliver siRNA to its intended action site and assess the delivery efficiency are challenges for current RNAi therapy, where effective siRNA delivery will join force with patient genetic profiling to achieve optimal treatment outcome. Imaging could become a critical enabler to maximize RNAi efficacy in the context of tracking siRNA delivery, rational dosimetry and treatment planning. Several imaging modalities have been used to visualize nanoparticle‐based siRNA delivery but rarely did they guide treatment planning. We report a multimodal theranostic lipid‐nanoparticle, HPPS(NIR)‐chol‐siRNA, which has a near‐infrared (NIR) fluorescent core, enveloped by phospholipid monolayer, intercalated with siRNA payloads, and constrained by apoA‐I mimetic peptides to give ultra‐small particle size (<30 nm). Using fluorescence imaging, we demonstrated its cytosolic delivery capability for both NIR‐core and dye‐labeled siRNAs and its structural integrity in mice through intravenous administration, validating the usefulness of NIR‐core as imaging surrogate for non‐labeled therapeutic siRNAs. Next, we validated the targeting specificity of HPPS(NIR)‐chol‐siRNA to orthotopic tumor using sequential four‐steps (in vivo, in situ, ex vivo and frozen‐tissue) fluorescence imaging. The image co‐registration of computed tomography and fluorescence molecular tomography enabled non‐invasive assessment and treatment planning of siRNA delivery into the orthotopic tumor, achieving efficacious RNAi therapy.  相似文献   

20.
Small interfering RNA (siRNA) has been considered as a highly promising therapeutic agent for human cancer treatment including glioblastoma (GBM), which is a fatal disease without effective therapy methods. However, siRNA-based GBM therapy is seriously hampered by a number of challenges in siRNA brain delivery including poor stability, short blood circulation, low blood–brain barrier (BBB) penetration, and tumor accumulation, as well as inefficient siRNA intracellular release. Herein, an Angiopep-2 (Ang) functionalized intracellular-environment-responsive siRNA nanocapsule (Ang-NCss(siRNA)) is successfully developed as a safe and efficient RNAi agent to boost siRNA-based GBM therapy. The experimental results demonstrate that the developed Ang-NCss(siRNA) displays long circulation in plasma, efficient BBB penetration capability, and GBM accumulation and retention, as well as responsive intracellular siRNA release due to the unique design of small size (25 nm) with polymeric shell for siRNA protection, Ang functionalization for BBB crossing and GBM targeting, and disulfide bond as a linker for intracellular-environment-responsive siRNA release. Such superior properties of Ang-NCss(siRNA) result in outstanding growth inhibition of orthotopic U87MG xenografts without causing adverse effects, achieving remarkably improved survival benefits. The developed siRNA nanocapsules provide a new strategy for RNAi therapy of GBM and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号