首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the assumption of normality is required for the validity of most of the available control charts for joint monitoring of unknown location and scale parameters, we propose and study a distribution‐free Shewhart‐type chart based on the Cucconi 1 statistic, called the Shewhart‐Cucconi (SC) chart. We also propose a follow‐up diagnostic procedure useful to determine the type of shift the process may have undergone when the chart signals an out‐of‐control process. Control limits for the SC chart are tabulated for some typical nominal in‐control (IC) average run length (ARL) values; a large sample approximation to the control limit is provided which can be useful in practice. Performance of the SC chart is examined in a simulation study on the basis of the ARL, the standard deviation, the median and some percentiles of the run length distribution. Detailed comparisons with a competing distribution‐free chart, known as the Shewhart‐Lepage chart (see Mukherjee and Chakraborti 2 ) show that the SC chart performs just as well or better. The effect of estimation of parameters on the IC performance of the SC chart is studied by examining the influence of the size of the reference (Phase‐I) sample. A numerical example is given for illustration. Summary and conclusions are offered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In the last 5 years, research works on distribution‐free (nonparametric) process monitoring have registered a phenomenal growth. A Google Scholar database search on early September 2015 reveals 246 articles on distribution‐free control charts during 2000–2009 and 466 articles in the following years. These figures are about 1400 and 2860 respectively if the word ‘nonparametric’ is used in place of ‘distribution‐free’. Distribution‐free charts do not require any prior knowledge about the process parameters. Consequently, they are very effective in monitoring various non‐normal and complex processes. Traditional process monitoring schemes use two separate charts, one for monitoring process location and the other for process scale. Recently, various schemes have been introduced to monitor the process location and process scale simultaneously using a single chart. Performance advantages of such charts have been clearly established. In this paper, we introduce a new graphical device, namely, circular‐grid charts, for simultaneous monitoring of process location and process scale based on Lepage‐type statistics. We also discuss general form of Lepage statistics and show that a new modified Lepage statistic is often better than the traditional of Lepage statistic. We offer a new and attractive post‐signal follow‐up analysis. A detailed numerical study based on Monte‐Carlo simulations is performed, and some illustrations are provided. A clear guideline for practitioners is offered to facilitate the best selection of charts among various alternatives for simultaneous monitoring of location‐scale. The practical application of the charts is illustrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Multivariate nonparametric control charts can be very useful in practice and have recently drawn a lot of interest in the literature. Phase II distribution‐free (nonparametric) control charts are used when the parameters of the underlying unknown continuous distribution are unknown and can be estimated from a sufficiently large Phase I reference sample. While a number of recent studies have examined the in‐control (IC) robustness question related to the size of the reference sample for both univariate and multivariate normal theory (parametric) charts, in this paper, we study the effect of parameter estimation on the performance of the multivariate nonparametric sign exponentially weighted moving average (MSEWMA) chart. The in‐control average run‐length (ICARL) robustness and the out‐of‐control shift detection performance are both examined. It is observed that the required amount of the Phase I data can be very (perhaps impractically) high if one wants to use the control limits given for the known parameter case and maintain a nominal ICARL, which can limit the implementation of these useful charts in practice. To remedy this situation, using simulations, we obtain the “corrected for estimation” control limits that achieve a desired nominal ICARL value when parameters are estimated for a given set of Phase I data. The out‐of‐control performance of the MSEWMA chart with the correct control limits is also studied. The use of the corrected control limits with specific amounts of available reference sample is recommended. Otherwise, the performance the MSEWMA chart may be seriously affected under parameter estimation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The statistical performance of traditional control charts for monitoring the process shifts is doubtful if the underlying process will not follow a normal distribution. So, in this situation, the use of a nonparametric control charts is considered to be an efficient alternative. In this paper, a nonparametric exponentially weighted moving average (EWMA) control chart is developed based on Wilcoxon signed‐rank statistic using ranked set sampling. The average run length and some other associated characteristics were used as the performance evaluation of the proposed chart. A major advantage of the proposed nonparametric EWMA signed‐rank chart is the robustness of its in‐control run length distribution. Moreover, it has been observed that the proposed version of the EWMA signed‐rank chart using ranked set sampling shows better detection ability than some of the competing counterparts including EWMA sign chart, EWMA signed‐rank chart, and the usual EWMA control chart using simple random sampling scheme. An illustrative example is also provided for practical consideration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The combined application of a Shewhart chart and cumulative sum (CUSUM) control chart is an effective tool for the detection of all sizes of process shifts as the scheme combines the advantages of a CUSUM at detecting small to moderate shifts and Shewhart for the quick detection of very large shifts. This article proposes new combined Shewhart–CUSUM S charts based on the extreme variations of ranked set sampling technique, for efficient monitoring of changes in the process dispersion. Using Monte Carlo simulations, the combined scheme is designed to minimize the average extra quadratic loss over the entire process shift domain. The results show that the combined Shewhart–CUSUM S charts uniformly outperform several other procedures for detecting increases and decreases in the process variability. Moreover, the proposed scheme can detect changes that are small enough to escape the Shewhart S chart or fairly large to escape detection by the CUSUM S chart. Numerical example is given to illustrate the practical application of the proposed scheme using real industrial data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Maximum exponentially weighted moving average (MaxEWMA) control charts have attracted substantial interest because of their ability to simultaneously detect increases and decreases in both the process mean and the process variability. In this paper, we propose new MaxEWMA control charts based on ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts, respectively. The proposed MaxEWMA control charts are based on the best linear unbiased estimators obtained under ODRSS and OIDRSS schemes. Extensive Monte Carlo simulations are used to estimate the average run length and standard deviation of the run length of the proposed MaxEWMA control charts. The run length performances and the diagnostic abilities of the proposed MaxEWMA control charts are compared with that of their counterparts based on simple random sampling (SRS), ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling schemes (OIRSS) schemes, that is, MaxEWMA‐SRS, maximum generally weighted moving average (MaxGWMA‐SRS), MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. It turns out that the proposed MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts perform uniformly better than the MaxEWMA‐SRS, MaxGWMA‐SRS, MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts in simultaneous detection of shifts in the process mean and variability. An application to real data is also provided to illustrate the implementations of the proposed and existing MaxEWMA control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Nonparametric control charts are widely used when the parametric distribution of the quality characteristic of interest is questionable. In this study, we proposed a nonparametric progressive mean control chart, namely the nonparametric progressive mean chart, for efficient detection of disturbances in process location or target. The proposed chart is compared with the recently proposed nonparametric exponentially weighted moving average and nonparametric cumulative sum charts using different run length characteristics such as the average run length, standard deviation of the run length, and the percentile points of the run length distribution. The comparisons revealed that the proposed chart outperformed recent nonparametric exponentially weighted moving average and nonparametric cumulative sum charts, in terms of detecting the shifts in process target. A real life example concerning the fill heights of soft drink beverage bottles is also provided to illustrate the application of the proposed nonparametric control chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The exponentially weighted moving average (EWMA) control chart is one of a potentially powerful process monitoring tool of the statistical process control. The EWMA chart has now been widely used because of its excellent ability to detect small to moderate shifts in the process parameter(s). In this study, we propose a new nonparametric/distribution‐free EWMA chart for efficiently monitoring the changes in the process variability. We use extensive Monte Carlo simulations to compute the run length profiles of the proposed EWMA chart. For a better performance comparison, the proposed EWMA chart is compared with a recent existing EWMA chart that has already shown to have better performance than the existing control charts. It turns out that the proposed EWMA chart performs substantially and uniformly better than the existing powerful EWMA chart. The working and implementation of the proposed and existing EWMA charts with the help of an illustrative example are also included in this study. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for detecting changes in both process mean and process variability. In this paper, we propose an improved MaxEWMA control charts based on ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS) schemes for simultaneous detection of both increases and decreases in the process mean and/or variability, named MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. These MaxEWMA control charts are based on the best linear unbiased estimators of location and scale parameters obtained under ORSS and OIRSS methods. Extensive Monte Carlo simulations have been used to estimate the average run length and standard deviation of run length of the proposed MaxEWMA control charts. These control charts are compared with their counterparts based on simple random sampling (SRS), that is, MaxEWMA‐SRS and MaxGWMA‐SRS control charts. The proposed MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts are able to perform better than the MaxEWMA‐SRS and MaxGWMA‐SRS control charts for detecting shifts in the process mean and dispersion. An application to real data is provided to illustrate the implementation of the proposed MaxEWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are potentially powerful statistical process monitoring tools because of their excellent speed in detecting small to moderate persistent process shifts. Recently, synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control charts have been proposed based on simple random sampling (SRS) by integrating the EWMA and CUSUM control charts with the conforming run length control chart, respectively. These synthetic control charts provide overall superior detection over a range of mean shift sizes. In this article, we propose new SynEWMA and SynCUSUM control charts based on ranked set sampling (RSS) and median RSS (MRSS) schemes, named SynEWMA‐RSS and SynEWMA‐MRSS charts, respectively, for monitoring the process mean. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed control charts. The run length performances of these control charts are compared with their existing powerful counterparts based on SRS, RSS and MRSS schemes. It turns out that the proposed charts perform uniformly better than the Shewhart, optimal synthetic, optimal EWMA, optimal CUSUM, near‐optimal SynEWMA, near‐optimal SynCUSUM control charts based on SRS, and combined Shewhart‐EWMA control charts based on RSS and MRSS schemes. A similar trend is observed when constructing the proposed control charts based on imperfect RSS schemes. An application to a real data is also provided to demonstrate the implementations of the proposed SynEWMA and SynCUSUM control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Exponentially weighted moving average (EWMA) control charts have received considerable attention for detecting small changes in the process mean or the process variability. Several EWMA control charts are constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring changes in the process dispersion. In this paper, we propose new EWMA control charts for monitoring process dispersion based on the best linear unbiased absolute estimators obtained under simple random sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA‐SRS and EWMA‐RSS control charts. The performance of the proposed EWMA control charts is evaluated in terms of the average run length and standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control charts are then compared with their existing counterparts for detecting increases and decreases in the process dispersion. It turns out that the EWMA‐RSS control chart performs uniformly better than its analogues for detecting overall changes in process dispersion. Moreover, the EWMA‐SRS chart significantly outperforms the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain the construction and operations of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Very recently, monitoring the ratio of two normal random variables by means of control charts has been investigated in statistical process control literature. The industrial implementation of these control charts involves monitoring of processes where the correct proportion of two ingredients or elements within a product should be maintained under statistical control, monitoring of quality characteristics measuring the performance of a product as the ratio before and after some specific operation, for example, a chemical reaction following the introduction of an additive in a product, and monitoring of a chemical or physical property of a product, which is itself defined and computed as a ratio. This paper presents a Phase II synthetic control chart with each subgroup consisting of n > 1 sample units. Several tables are generated and commented to show the statistical performance of the investigated chart for known and random shift sizes affecting the in‐control ratio. A performance comparison with another control chart already proposed in literature shows the advantages associated to the implementation of the synthetic control chart. An illustrative example from the food industry is given for illustration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of detecting a shift of a percentile of a Weibull population in a process monitoring situation is considered. The parametric bootstrap method is used to establish lower and upper control limits for monitoring percentiles when process measurements have a Weibull distribution. Small percentiles are of importance when observing tensile strength and it is desirable to detect their downward shift. The performance of the proposed bootstrap percentile charts is considered based on computer simulations, and some comparisons are made with an existing Weibull percentile chart. The new bootstrap chart indicates a shift in the process percentile substantially quicker than the previously existing chart, while maintaining comparable average run lengths when the process is in control. An illustrative example concerning the tensile strength of carbon fibers is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Multivariate count data are popular in the quality monitoring of manufacturing and service industries. However, seldom effort has been paid on high‐dimensional Poisson data and two‐sided mean shift situation. In this article, a hybrid control chart for independent multivariate Poisson data is proposed. The new chart was constructed based on the test of goodness of fit, and the monitoring procedure of the chart was shown. The performance of the proposed chart was evaluated using Monte Carlo simulation. Numerical experiments show that the new chart is very powerful and sensitive at detecting both positive and negative mean shifts. Meanwhile, it is more robust than other existing multiple Poisson charts for both independent and correlated variables. Besides, a new standardization method for Poisson data was developed in this article. A real example was also shown to illustrate the detailed steps of the new chart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号