首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the assumption of normality is required for the validity of most of the available control charts for joint monitoring of unknown location and scale parameters, we propose and study a distribution‐free Shewhart‐type chart based on the Cucconi 1 statistic, called the Shewhart‐Cucconi (SC) chart. We also propose a follow‐up diagnostic procedure useful to determine the type of shift the process may have undergone when the chart signals an out‐of‐control process. Control limits for the SC chart are tabulated for some typical nominal in‐control (IC) average run length (ARL) values; a large sample approximation to the control limit is provided which can be useful in practice. Performance of the SC chart is examined in a simulation study on the basis of the ARL, the standard deviation, the median and some percentiles of the run length distribution. Detailed comparisons with a competing distribution‐free chart, known as the Shewhart‐Lepage chart (see Mukherjee and Chakraborti 2 ) show that the SC chart performs just as well or better. The effect of estimation of parameters on the IC performance of the SC chart is studied by examining the influence of the size of the reference (Phase‐I) sample. A numerical example is given for illustration. Summary and conclusions are offered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Maximum exponentially weighted moving average (MaxEWMA) control charts have attracted substantial interest because of their ability to simultaneously detect increases and decreases in both the process mean and the process variability. In this paper, we propose new MaxEWMA control charts based on ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts, respectively. The proposed MaxEWMA control charts are based on the best linear unbiased estimators obtained under ODRSS and OIDRSS schemes. Extensive Monte Carlo simulations are used to estimate the average run length and standard deviation of the run length of the proposed MaxEWMA control charts. The run length performances and the diagnostic abilities of the proposed MaxEWMA control charts are compared with that of their counterparts based on simple random sampling (SRS), ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling schemes (OIRSS) schemes, that is, MaxEWMA‐SRS, maximum generally weighted moving average (MaxGWMA‐SRS), MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. It turns out that the proposed MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts perform uniformly better than the MaxEWMA‐SRS, MaxGWMA‐SRS, MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts in simultaneous detection of shifts in the process mean and variability. An application to real data is also provided to illustrate the implementations of the proposed and existing MaxEWMA control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Nonparametric control charts are widely used when the parametric distribution of the quality characteristic of interest is questionable. In this study, we proposed a nonparametric progressive mean control chart, namely the nonparametric progressive mean chart, for efficient detection of disturbances in process location or target. The proposed chart is compared with the recently proposed nonparametric exponentially weighted moving average and nonparametric cumulative sum charts using different run length characteristics such as the average run length, standard deviation of the run length, and the percentile points of the run length distribution. The comparisons revealed that the proposed chart outperformed recent nonparametric exponentially weighted moving average and nonparametric cumulative sum charts, in terms of detecting the shifts in process target. A real life example concerning the fill heights of soft drink beverage bottles is also provided to illustrate the application of the proposed nonparametric control chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for detecting changes in both process mean and process variability. In this paper, we propose an improved MaxEWMA control charts based on ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS) schemes for simultaneous detection of both increases and decreases in the process mean and/or variability, named MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. These MaxEWMA control charts are based on the best linear unbiased estimators of location and scale parameters obtained under ORSS and OIRSS methods. Extensive Monte Carlo simulations have been used to estimate the average run length and standard deviation of run length of the proposed MaxEWMA control charts. These control charts are compared with their counterparts based on simple random sampling (SRS), that is, MaxEWMA‐SRS and MaxGWMA‐SRS control charts. The proposed MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts are able to perform better than the MaxEWMA‐SRS and MaxGWMA‐SRS control charts for detecting shifts in the process mean and dispersion. An application to real data is provided to illustrate the implementation of the proposed MaxEWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Exponentially weighted moving average (EWMA) control charts have received considerable attention for detecting small changes in the process mean or the process variability. Several EWMA control charts are constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring changes in the process dispersion. In this paper, we propose new EWMA control charts for monitoring process dispersion based on the best linear unbiased absolute estimators obtained under simple random sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA‐SRS and EWMA‐RSS control charts. The performance of the proposed EWMA control charts is evaluated in terms of the average run length and standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control charts are then compared with their existing counterparts for detecting increases and decreases in the process dispersion. It turns out that the EWMA‐RSS control chart performs uniformly better than its analogues for detecting overall changes in process dispersion. Moreover, the EWMA‐SRS chart significantly outperforms the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain the construction and operations of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The problem of detecting a shift of a percentile of a Weibull population in a process monitoring situation is considered. The parametric bootstrap method is used to establish lower and upper control limits for monitoring percentiles when process measurements have a Weibull distribution. Small percentiles are of importance when observing tensile strength and it is desirable to detect their downward shift. The performance of the proposed bootstrap percentile charts is considered based on computer simulations, and some comparisons are made with an existing Weibull percentile chart. The new bootstrap chart indicates a shift in the process percentile substantially quicker than the previously existing chart, while maintaining comparable average run lengths when the process is in control. An illustrative example concerning the tensile strength of carbon fibers is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The S2 chart has been known as a powerful tool to monitor the variability of the normal process. When the variance of the process is unknown, it needs to be estimated by Phase I samples. It is well known that there are serious effects of parameter estimation on the performance of the S2 chart based on known parameter assumption. If the effects of parameter estimation are not considered, it can lead to an increase in the number of false alarms and a reduction in the ability of the chart to detect process changes except for very small shifts in the variance. Based on the criterion of average run length (ARL) unbiased, a S2 control chart is developed when the in‐control variance is estimated. The performance of the proposed control chart is also evaluated in terms of the ARL and standard deviation of the run length. Finally, an example is used to illustrate the proposed control chart. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The p chart is often used to monitor the fraction of non‐conforming products. However, the p chart is slow in detecting sustaining shifts of small magnitude in the level of fraction non‐conforming. This paper discusses a more efficient alternative to the standard p chart approach, i.e. the construction of a moving average control chart for fraction non‐conforming, p. Approximations by means of mathematical calculations and the corresponding simulation results for the average run length profiles show that the performance of the new approach is superior to that of the standard approach. The new approach is easy to implement and hence might be attractive and useful to practitioners. Examples are also given to show how the proposed procedure is put to work in real situations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA‐type charts good at detecting small disturbances in the process. This article proposes two new memory control charts for monitoring process dispersion, named as floating T ? S2 and floating U ? S2 control charts, respectively. The average run length (ARL) performance of the proposed charts is evaluated through a simulation study and is also compared with the CUSUM and EWMA charts for process dispersion. It is found that the proposed charts are better in detecting both positive as well as negative shifts. An additional comparison shows that the floating U ? S2 chart has slightly smaller ARLs for larger shifts, while for smaller shifts, the floating T ? S2 chart has better performance. An example is also provided which shows the application of the proposed charts on simulated datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Control charts are the most extensively used technique to detect the presence of special cause variations in processes. They can be classified into memory and memoryless control charts. Cumulative sum and exponentially weighted moving average control charts are memory‐type control charts as their control structures are developed in such a way that the past information is not ignored as it is done in the case of memoryless control charts, like the Shewhart‐type control charts. The present study is based on the proposal of a new memory‐type control chart for process dispersion. This chart is named as CS‐EWMA chart as its plotting statistic is based on a cumulative sum of the exponentially weighted moving averages. Comparisons with other memory charts used to monitor the process dispersion are done by means of the average run length. An illustration of the proposed technique is done by applying the CS‐EWMA chart on a simulated dataset. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Shewhart mean and variance schemes continue to enjoy great popularity among process engineers because they are easy to understand and are the most sensitive in detecting large process shifts. For some processes, for example the screen printing process in memory modules assembly, there is a possibility of the process mean and variance shifting at the same time due to special causes. Thus, instead of studying the joint behavior by looking at the mean and variance information on two separate charts, it is practical and usually more meaningful to look at the combined mean and variance information on an interval charting scheme. The interval scheme is found to have a similar run length performance to the Shewhart mean and variance schemes and only a single chart needs to be managed. A simple design procedure for the interval scheme that matches the corresponding Shewhart scheme is provided for easy implementation. Also, the interval and Shewhart schemes are compared based on real manufacturing data sets. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
An R chart is often used to monitor shifts in the process variability. However, the range, , statistics from a sampling distribution are highly skewed. Hence, the classical R chart based on the control limits will not give an in‐control average run length of approximately 370, or equivalently a type I error, . In this paper, an approach is shown to obtain the control limits of an improved R chart based on a desired type I error from the density function of the Ri statistics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The control chart based on Downton's estimator (D chart) has recently been introduced in the literature for monitoring the process variability. The D chart is found to be equally efficient to the S chart in terms of detecting shifts in process variability. In this paper, salient features of D chart and the conforming run length chart are combined to produce synthetic D chart. The average run length performance of the synthetic D chart is investigated using simulation study and is compared with the originally proposed D chart and some other procedures proposed in the literature. It is found that it has an improved performance in comparison with the traditional control charts for process variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号