首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The emergence of one‐dimensional nanostructures as fundamental constituents of advanced materials and next‐generation electronic and electromechanical devices has increased the need for their atomic‐scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic structure and defect characterization. A number of approaches have been recently developed to combine these capabilities with in‐situ mechanical deformation and electrical characterization in the emerging field of in‐situ TEM electromechanical testing. This has enabled researchers to establish unambiguous synthesis‐structure‐property relations for one‐dimensional nanostructures. In this article, the development and latest advances of several in‐situ TEM techniques to carry out mechanical and electromechanical testing of nanowires and nanotubes are reviewed. Through discussion of specific examples, it is shown how the merging of several microsystems and TEM has led to significant insights into the behavior of nanowires and nanotubes, underscoring the significant role in‐situ techniques play in the development of novel nanoscale systems and materials.  相似文献   

4.
Piezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state‐of‐the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects. The review covers existing characterization and analysis methods and summarizes data reported in the literature. It also provides an assessment of research needs and opportunities. Throughout the discussion, the importance of coupling experimental and computational studies is highlighted. This is crucial for obtaining unambiguous size effects of nanowire properties, which truly reflect the effect of scaling rather than a particular synthesis route. We show that such a combined approach is critical to establish synthesis‐structure‐property relations that will pave the way for optimal usage of piezoelectric nanowires.  相似文献   

5.
As the critical feature sizes of integrated circuits approaching sub‐10 nm, ultrathin gold nanowires (diameter <10 nm) have emerged as one of the most promising candidates for next‐generation interconnects in nanoelectronics. Also due to their ultrasmall dimensions, however, the structures and morphologies of ultrathin gold nanowires are more prone to be damaged during practical services, for example, Rayleigh instability can significantly alter their morphologies upon Joule heating, hindering their applications as interconnects. Here, it is shown that upon mechanical perturbations, predamaged, nonuniform ultrathin gold nanowires can quickly recover into uniform diameters and restore their smooth surfaces, via a simple mechanically assisted self‐healing process. By examining the local self‐healing process through in situ high‐resolution transmission electron microscopy, the underlying mechanism is believed to be associated with surface atomic diffusion as evidenced by molecular dynamics simulations. In addition, mechanical manipulation can assist the atoms to overcome the diffusion barriers, as suggested by ab initio calculations, to activate more surface adatoms to diffuse and consequently speed up the self‐healing process. This result can provide a facile method to repair ultrathin metallic nanowires directly in functional devices, and quickly restore their microstructures and morphologies by simple global mechanical perturbations.  相似文献   

6.
Facile fabrication of advanced catalysts toward oxygen reduction reaction with improving activity and stability is significant for proton‐exchange membrane fuel cells. Based on a generic solid‐state reaction, this study reports a modified hydrogen‐assisted, gas‐phase synthesis for facile, scalable production of surfactant‐free, thin, platinum‐based nanowire‐network electrocatalysts. The free‐standing platinum and platinum–nickel alloy nanowires show improvements of up to 5.1 times and 10.9 times for mass activity with a minimum 2.6% loss after an accelerated durability test for 10k cycles; 8.5 times and 13.8 times for specific activity, respectively, compared to commercial Pt/C catalyst. In addition, combined with a wet impregnation method, different substrate‐materials‐supported platinum‐based nanowires are obtained, which paves the way to practical application as a next‐generation supported catalyst to replace Pt/C. The growth stages and formation mechanism are investigated by an in situ transmission electron microscopy study. It reveals that the free‐standing platinum nanowires form in the solid state via metal‐surface‐diffusion‐assisted oriented attachment of individual nanoparticles, and the interaction with gas molecules plays a critical role, which may represent a gas‐molecular‐adsorbate‐modified growth in catalyst preparation.  相似文献   

7.
Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale which is confirmed by molecular dynamics (MD) simulation results. Combined with twin boundary migration and multiple dislocations nucleated from surface, TBS causes a superlarge fracture strain which is over 166% and a severe necking which is over 93%, far beyond the typical values for most nanomaterials without twins.  相似文献   

8.
Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure‐property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro‐electro‐mechanical system (MEMS) that allows integrated four‐point, uniaxial, electromechanical measurements of freestanding nanostructures in‐situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta‐twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n‐type, [111]‐oriented silicon nanowires up to unprecedented levels of ~7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two‐point electromechanical measurements.  相似文献   

9.
The crossbar structure of resistive random access memory (RRAM) is the most promising technology for the development of ultrahigh‐density devices for future nonvolatile memory. However, only a few studies have focused on the switching phenomenon of crossbar RRAM in detail. The main purpose of this study is to understand the formation and disruption of the conductive filament occurring at the crossbar center by real‐time transmission electron microscope observation. Core–shell Ni/NiO nanowires are utilized to form a cross‐structure, which restrict the position of the conductive filament to the crosscenter. A significant morphological change can be observed near the crossbar center, which results from the out‐diffusion and backfill of oxygen ions. Energy dispersive spectroscopy and electron energy loss spectroscopy demonstrate that the movement of the oxygen ions leads to the evolution of the conductive filament, followed by redox reactions. Moreover, the distinct reliability of the crossbar device is measured via ex situ experiments. In this work, the switching mechanism of the crossbar core–shell nanowire structure is beneficial to overcome the problem of nanoscale minimization. The experimental method shows high potential to fabricate high‐density RRAM devices, which can be applied to 3D stacked package technology and neuromorphic computing systems.  相似文献   

10.
11.
The unstable mechanical properties of flexible transparent conductive films (TCFs) make it difficult for them to meet the requirements for displays or wearable devices. Here, the relationship between the mechanism behind the bending behavior and the electrical properties, which is important for improving the mechanical stability of flexible TCFs, is explored. Flexible TCFs are reported based on silver nanowires (AgNWs) and bio‐based poly(ethylene‐co‐1,4‐cyclohexanedimethylene 2,5‐furandicarboxylate)s (PECFs), with a low sheet resistance (23.8 Ω sq?1 at 84.6% transmittance) and superior mechanical properties. The electrical properties of the AgNW/PECFs composite film show almost no change after bending for 2000 times.  相似文献   

12.
The plasmon‐mediated synthesis of silver nanoparticles is a versatile synthetic method which leverages the localized surface plasmon resonance (LSPR) of nanoscale silver to generate particles with non‐spherical shapes and control over dimensions. Herein, a method is reported for controlling the twinning structure of silver nanoparticles, and consequently their shape, via the plasmon‐mediated synthesis, solely by varying the excitation wavelength between 400, 450, and 500 nm, which modulates the rate of Ag+ reduction. Shorter, higher energy excitation wavelengths lead to faster rates of reaction, which in turn yield structures containing a greater number of twin boundaries. With this method, silver cubes can be synthesized using 450 nm excitation, which represents the first time this shape has been realized by a plasmon‐mediated synthetic approach. In addition, these cubes contain an unusual twinning structure composed of two intersecting twin boundaries or multiple parallel twin boundaries. With respect to their twinning structure, these cubes fall between planar‐twinned and multiply twinned nanoparticles, which are synthesized using 500 and 400 nm excitation, respectively.  相似文献   

13.
14.
15.
16.
17.
In this study, cryogenic thermal cycling was applied to bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) bending samples. After that, significantly improved plasticity and better fatigue properties at three‐point bending as well as higher impact toughness were measured in dependence of the duration and the cooling rate of the thermal cycling process. This improved material behaviour is caused by reinforced shear banding, visible in scanning electron microscopy at the side faces of the specimens after fracture. A comprehensive analysis of the fracture surfaces of both quasi‐static and cyclic bent specimens revealed intense crack propagation along major shear bands and increased fatigue fracture regions, respectively. It is supposed that there is a structural rejuvenation due to the local variations of the thermal expansion coefficients within the multicomponent alloy affecting the mechanical properties.  相似文献   

18.
Battery‐type materials are promising candidates for achieving high specific capacity for supercapacitors. However, their slow reaction kinetics hinders the improvement in electrochemical performance. Herein, a hybrid structure of P‐doped Co3O4 (P‐Co3O4) ultrafine nanoparticles in situ encapsulated into P, N co‐doped carbon (P, N‐C) nanowires by a pyrolysis–oxidation–phosphorization of 1D metal–organic frameworks derived from Co‐layered double hydroxide as self‐template and reactant is reported. This hybrid structure prevents active material agglomeration and maintains a 1D oriented arrangement, which exhibits a large accessible surface area and hierarchically porous feature, enabling sufficient permeation and transfer of electrolyte ions. Theoretical calculations demonstrate that the P dopants in P‐Co3O4@P, N‐C could reduce the adsorption energy of OH? and regulate the electrical properties. Accordingly, the P‐Co3O4@P, N‐C delivers a high specific capacity of 669 mC cm?2 at 1 mA cm?2 and an ultralong cycle life with only 4.8% loss over 5000 cycles at 30 mA cm?2. During the fabrication of P‐Co3O4@P, N‐C, Co@P, N‐C is simultaneously developed, which can be integrated with P‐Co3O4@P, N‐C for the assembly of asymmetric supercapacitors. These devices achieve a high energy density of 47.6 W h kg?1 at 750 W kg?1 and impressive flexibility, exhibiting a great potential in practical applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号