首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compacts made from chemically grade Fe2O3 were fired at 1473K for 6 hrs. The fired compacts were isothermally reduced either by hydrogen or carbon monoxide at 1073–1373K. The O2 weight‐loss resulting from the reduction process was continuously recorded as a function of time using TGA technique, whereas the volume change at different reduction conditions was measured by displacement method. Porosity measurements, microscopic examination and X‐ray diffraction analysis were used to characterize the fired and reduced products. The rate of reduction at both the initial and final stages was increased with temperature. The reduction mechanism deduced from the correlations between apparent activation energy values, structure of partially reduced compacts and application of gas‐solid reaction models revealed the reduction rate (dr/dt) at both the initial and final stages. At early stages, the reduction was controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanism, while at the final stages the interfacial chemical reaction was the rate determining step. In H2 reduction, maximum swelling (80%) was obtained at 1373K, which was attributed to the formation of metallic iron plates. In CO reduction, catastrophic swelling (255%) was obtained at 1198K due to the formation of metallic iron plates and whiskers.  相似文献   

2.
Dry compacts of pure Fe2O3 and Fe2O3 doped with either (2–6 mass%) MnO2, (2.5–7.5 mass%) SiO2 or with both (2–6% MnO2 + 7.5% SiO2) were indurated at 1373 K for 6 hours and physically and chemically characterized. The fired compacts were isothermally reduced with pure CO gas at 1073–1373 K. The O2‐weight loss was continuously recorded as a function of time using TGA technique. The external volume of pure and doped compacts was measured at different reduction conditions and the volume change was calculated. The structural changes accompanying the reduction process were visually and microscopically examined and the different phases were identified by X‐ray diffraction analysis. After firing, manganese ferrite (MnFe2O4) phase was identified in MnO2‐doped compacts. In pure Fe2O3 compacts, the external volume of compacts was increased with reduction temperature, showing a maximum swelling value at 1198 K. Catastrophic swelling was observed in MnO2‐doped Fe2O3 compacts, the volume change increased with MnO2 content showing catastrophic swelling in compacts containing 6%MnO2 at 1248 K. The catastrophic swelling was attributed to the formation of dense metallic iron whiskers and plates in a highly porous structure. Unlike in MnO2‐doped samples, no considerable volume changes were detected in SiO2‐doped Fe2O3 and (MnO2 + SiO2)‐doped Fe2O3 compacts where the presence of silica greatly hindered the swelling phenomenon at all reduction temperatures.  相似文献   

3.
《钢铁冶炼》2013,40(8):631-640
Abstract

The effect of basicity on the metallic iron whisker growth during wüstite reduction was studied in the present investigation. Compacts of pure and CaO/SiO2 doped wüstite were synthesised. The annealed compacts were isothermally reduced in thermogravimetric apparatus with CO gas at 800–1100°C. The course of reduction was followed by measuring the weight loss as a function of time. X-ray diffraction (XRD), scanning electron microscope (SEM), optical microscope and porosity measurements were used to characterise the annealed and reduced samples. The influence of temperature and basicity (CaO/SiO2) on the reduction behaviour and the morphology of the annealed samples were investigated. The reduction rate increased with temperature but decreased by increasing basicity value. Metallic iron whisker shape structure was detected in the pure wüstite samples after reduction at high temperatures while in basic wüstite samples, whiskers were formed at the surface of the compacts. From the activation energy values, the reduction of pure wüstite is most likely controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. The reduction of basic wüstite compacts with 0·2 and 0·5 basicity ratios are most likely controlled by chemical reaction mechanism while for 0·8 basicity ratio, the reduction rate is most likely controlled by solid state reaction mechanism.  相似文献   

4.
Compacts made from pure wüstite and compacts doped with 2% MgO were annealed at 1000°C for 3 hrs in 50%CO‐CO2 gas mixtures. The annealed samples were isothermally reduced at 800‐1100°C in H2 gas. Selected samples were isothermally reduced at 1000°C with pure CO and 50%H2‐CO gas mixture to investigate the effect of gas composition on the reduction processes. The oxygen weight loss resulting from the reduction of the samples was recorded as a function of time. X‐ray diffraction (XRD), scanning electron microscopy (SEM), optical microscopy and porosity measurements were used to characterize the annealed and reduced samples. Magnesio‐wüstite (MgO·FeO) phase was formed during the annealing of MgO doped wüstite. The MgO·FeO in turn decreased the porosity of the annealed doped samples compared to pure wüstite compacts. The influence of temperature, gas composition and MgO content on the reduction behaviour and the morphology of the annealed samples was investigated. The values of the apparent activation energy were calculated from Arrhenius plots and correlated with the reduction mechanism. The reduction rate increased with reaction temperature. In doped compacts, the MgO·FeO phase was not completely reduced both at lower reduction temperature (800°C) and during reduction with pure CO. From the activation energy values, the initial reaction stage was controlled by the combined effect of chemical reaction and gas diffusion while solid state diffusion controlled the final stage of reduction. Morphologically, metallic iron was formed in different shape structures under the effect of MgO addition and reduction conditions.  相似文献   

5.
The need to develop green steelmaking techniques has led to the replacement of reducing agents such as CO with H2. H2 and N2/H2 mixtures can be used for the carbothermal reduction of iron ore. Herein, the reduction swelling index (RSI) of iron ore pellets in a forming gas (N2/H2) atmosphere at temperatures of 700–1000 °C is investigated and it is compared with that in pure H2. It is showed in the experimental results that the RSI increases with increasing temperature for both the H2 and N2/H2 atmospheres. The maximum swelling is reached approximately 5 min into the H2 reduction process, while in the N2/H2 atmosphere, it is reached after 25–45 min of reduction, depending on the temperature. When the reduction temperature exceeds 900 °C, the RSI is greater than 20%. Scanning electron microscopy/energy-dispersive X-ray spectroscopy is performed to detect the changes in the microstructure and chemical composition of the samples. The nonreduced areas in the reduced pellets during the N2/H2 reduction process are analyzed using light optical microscopy.  相似文献   

6.
This paper presents recent results of direct reduction investigation of different combination of blends of manganese ore, iron ore and coal at the Department of Ferrous Metallurgy (IEHK) of RWTH Aachen University. A mixture of iron and manganese ore in a ratio of 75/25 is a good raw material for steelmaking of high Mn‐alloyed grades. The experimental studies consisting of reduction of (a) fine material and (b) agglomerated material (briquettes) were carried out in the range of 1273 to 1673 K. The behaviour of combined reduction of manganese ore and iron ore and the employment in the direct reduction on a coal and gas basis for production of steels with high Mn content were investigated. It was found that a high metallization degree for Mn can be reached at 1273 K with the reduction of manganese ore by hydrogen‐containing gas. Addition of carbon monoxide to the reducing gas retarded the reduction process. The addition of coal to manganese ore and iron ore blends increased the degree of reduction. The results of carbothermic reduction of briquettes consisting of a mixture of manganese ore and iron ore combined with coal as reducing agent show that a high temperature, a low Mn/Fe ratio and a high Fe2O3 content have a favourable effect on the degree of reduction. In order to obtain a high degree of metallization, the temperature should be higher than 1473 K. The reduction of briquettes at higher temperatures (up 1573 K) has shown a molten phase and the separation of slag and metal.  相似文献   

7.
The development of manufacturing technology of Sn-bearing stainless steel inspires a novel concept for using Sn-bearing complex iron ore via reduction with mixed H2/CO gas to prepare Sn-enriched direct reduced iron (DRI). The thermodynamic analysis of the reduction process confirms the easy reduction of stannic oxide to metallic tin and the rigorous conditions for volatilizing SnO. Although the removal of tin is feasible by reduction of the pellet at 1223 K (950 °C) with mixed gas of 5 vol pct H2, 28.5 vol pct CO, and 66.5 vol pct CO2 (CO/(CO + CO2) = 30 pct), it is necessary that the pellet be further reduced for preparing DRI. In contrast, maintaining Sn in the metallic pellet is demonstrated to be a promising way to effectively use the ore. It is indicated that only 5.5 pct of Sn is volatilized when the pellet is reduced at 1223 K (950 °C) for 30 minutes with the mixed gas of 50 vol pct H2, 50 vol pct CO (CO/(CO + CO2) = 100 pct). A metallic pellet (Sn-bearing DRI) with Sn content of 0.293 pct, Fe metallization of 93.5 pct, and total iron content of 88.2 pct is prepared as a raw material for producing Sn-bearing stainless steel. The reduced tin in the Sn-bearing DRI either combines with metallic iron to form Sn-Fe alloy or it remains intact.  相似文献   

8.
Investigations have been carried out into the effects of sulfur on the reduction of solid calciowustites in CO/CO2 gas mixtures. It has been shown that the presence of calcium in the oxide and sulfur in the gas leads to catastrophic swelling through iron whisker growth. The various mechanisms of iron growth in these systems are also discussed. D. H. St. JOHN, formerly Postdoctoral Fellow, University of Queensland F. NAKIBOGLU, formerly Graduate Student, Department of Mining and Metallurgical Engineering, University of Queensland, Brisbane, Australia  相似文献   

9.
Commercially pure iron oxide in the form of fine particles were reacted with CO‐H2 gas mixtures at ambient pressure (? 0.8 atm) in the temperature range 573 to 1073K. Reduction to metallic iron was carried out with pure hydrogen. The rate of formation of iron carbide was measured by recording the weight change with a thermogravimetric apparatus. The results obtained indicate that for each gas phase composition a maximum rate was observed, at apparently the same temperature. These maxima in the rate occur at a lower temperature than those reported in previous investigations. A dissociative adsorption model, based on the reduction of CO with hydrogen was developed which qualitatively describes the observed results.  相似文献   

10.
利用高温光学体视显微镜和高温热台研究MgO对CO还原Fe2O3中铁晶须成核、生长的影响,并结合SEM、EDS、TG、红外光谱等,从微观角度揭示MgO对还原过程气固界面上金属铁的析出形态的影响机理。结果表明,掺入MgO能有效改变氧化铁还原后析出铁的形态,抑制了铁晶须成核和生长;当掺入质量分数超过2%时,还原后金属铁全部以层状晶析出,无铁晶须形成。  相似文献   

11.
 利用热重分析的方法研究了Fe2O3在竖式电阻炉内被CO/CO2混合气体还原,Na2O对其还原行为的影响,共设计了4个成分,分别为纯Fe2O3、Fe2O3-1%Na2O、Fe2O3-3%Na2O和Fe2O3-5%Na2O。在还原过程中由于还原失氧引起的试验小饼失重量被实时记录下来,根据这些数据可以计算出还原反应速率以及化学反应的速率常数,以此来判断Na2O对Fe2O3还原性的影响。同时利用扫描电镜观察了还原后试样的微观形貌变化。研究发现:Na2O的存在将阻碍Fe2O3的还原。通过对还原后小饼的显微形貌观察,结合FeO-Na2O二元相图,发现这种负面影响主要是由于在还原过程中产生液相引起的。另外,还检测了还原前后试验小饼的孔隙率和体积变化。检测结果确认:还原后含Na2O的试验小饼的孔隙率和体积都有所下降。分析认为这种现象同样归因于还原过程中液相的产生。  相似文献   

12.
Cobalt ferrite (CoFe2O4) was reduced in CO-CO2 gas mixtures at 1173 K at total pressure between 6.6 × 103 and 3.3 × 104 Pa, and at CO/CO2 ratios between 2.9 and 11.8. The reduction led to the formation of metal whiskers. The experiments and analysis emphasized the behavior of the whisker diameter during reduction. Impurities such as calcium and potassium stimulate metal nucleation but appear to inhibit catalysis of gas reactions at the metal/gas/oxide triple junction. The steady state whisker diameter was found to be inversely proportional to the total gas pressure at constant CO/CO2 ratio. A new model is proposed to explain whisker development. It considers metal/oxide interface diffusion coupled with a metal/oxide/gas triple junction reaction at the whisker base as the process determining the whisker diameter.  相似文献   

13.
The reduction behaviour of hematite compacts by H2-CO gas mixtures was investigated at 1073-1223 K. The total porosity, pore size distribution and surface area of the compact was measured using mercury pressure porosimeter. The reduction tests were carried out using Cahn balance. The reduction behaviour could not be described in terms of a single rate-determining step; the reduction process was initially controlled by the chemical reaction at the oxide/iron interface, controlled by the intraparticle diffusion through the reduced layer towards the end of reduction, and the mixed control, in between. Over the whole range, the reduction rate decreased with CO content in the gas mixture. The chemical reaction rate constants were two to three times higher for H2 reduction than those of CO reduction, and the effective diffusivities of H2 reduction were three to four times higher than those of CO reduction. Values of activation energy for chemical reaction were found to be 19.8-42.1 kJ/mol depending on the gas compositions; 100% CO showing the lowest.  相似文献   

14.
Study of nonisothermal reduction of iron ore-coal/char composite pellet   总被引:1,自引:0,他引:1  
Cold-bonded composite pellets, consisting of iron ore fines and fines of noncoking coal or char, were prepared by steam curing at high pressure in an autoclave employing inorganic binders. Dry compressive strength ranged from 200 to 1000 N for different pellets. The pellets were heated from room temperature to 1273 K under flowing argon at two heating rates. Rates of evolution of product gases were determined from gas Chromatographie analysis, and the temperature of the sample was monitored by thermocouple as a function of time during heating. Degree of reduction, volume change, and compressive strength of the pellets upon reduction were measured subsequently. Degree of reduction ranged from 46 to 99 pct. Nonisothermal devolatilization of coal by this procedure also was carried out for comparison. It has been shown that a significant quantity (10 to 20 pct of the pellet weight) of extraneous H2O and CO2 was retained by dried pellets. This accounted for the generation of additional quantities of H2 and CO during heating. Carbon was the major reductant, but reduction by H2 also was significant. Ore-coal and ore-char composites exhibited a comparable degree of reduction. However, the former showed superior postreduction strength due to a smaller amount of swelling upon reduction. Formerly Graduate Student, Department of Metallurgical Engineering, Indian Institute of Technology, Kanpur, India  相似文献   

15.
 Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution were used to prepare sheet film sample of Fe2O3-CaO by thermal decomposition at high temperature. In-situ observation was conducted using a stereo optical microscope and a hot-stage. And reduction kinetics of samples was studied by thermo gravimetric (TG) method. Some samples after reduction were analyzed by using the scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and fourier transform infrared (FT-IR) spectrometer. Results indicate that during the reduction of iron oxides with CO, metallic iron is mostly precipitated as whisker and the precipitation behavior mainly depends on reduction rate. Doping CaO can significantly increase the reduction rate and effectively change the precipitation morphology of metallic iron after the reduction. When CaO doping concentration is less than 4% (mass percent), CaO can promote whisker formation of reduced iron; as it reaches 6% (mass percent), CaO inhibits iron whiskers growth; as it is more than 8% (mass percent), no whiskers could be observed. Therefore, controlling the quantity of Ca2+ is effective to control the formation and growth of iron whiskers during gaseous reduction and thus eliminating ore grain sticking caused by intertexture of iron whiskers.  相似文献   

16.
The product morphologies obtained on the reduction of wustite in CO/CO2 gas mixtures between 1073 and 1373 K are reported. Three types of product morphology are identified, namely, type A (porous iron), type B (porous wustite covered with dense iron), and type C (dense wustite covered with dense iron). The reactions which occur during the reduction of wustite in CO/CO2 and H2/H2O systems both before and after iron nucleation are examined. The product morphologies obtained on reduction are explained qualitatively in terms of the relative rates of the chemical reaction with the gas and the mass transport processes both in and on the solid. Formerly Postdoctoral Fellow at the Department of Mining and Metallurgical Engineering, University of Queensland, St. Lucia, Brisbane, Australia An erratum to this article is available at .  相似文献   

17.
Numerical solutions have been obtained for the mixed chemical reaction/diffusion limited planar decomposition of a wustite slab prior to iron metal nucleation. The results of the analysis are presented in dimensionless parameters and predict the iron concentration profile within the slab during decomposition, the total loss of oxygen from the sample, and the concentration of iron at the gas/wustite interface, as a function of time. The formulation of the problem allows solutions to be obtained for reduction in H2/H2O or CO/CO2 gas mixtures at reaction temperatures between 873 K and 1573 K.  相似文献   

18.
Compacts of Fe2O3 and Fe2O3 doped with varying amounts of Na2O were isothermally reduced at several temperatures, using CO/CO2 mixed gas in a vertical resistance furnace. To determine the effect of Na2O on the reduction of Fe2O3 compacts, the mass loss due to oxygen removal was continuously recorded, from which the reduction rate and rate constant were obtained. Na2O was found to retard the reduction of Fe2O3 compacts. The apparent activation energy (E a) of reaction and the mathematical relationship for pore gas diffusion suggested that the reduction behavior at the initial stages was controlled by a combination of pore gas diffusion and interfacial chemical reaction. At the intermediate and late stages of reduction, pore gas diffusion was the sole contributing factor. Morphological examination of the reduced compacts showed the formation of a liquid phase during the reduction process, which appeared to lower the rate of reaction.  相似文献   

19.
Fired compacts of hematite doped with different contents of CaO (mass fractions were 3.5, 4.0, 4.5, 5.0 %) were isothermally reduced to wüstite in a CO‐CO2 gas mixture at 1173K. It was found from X‐ray diffraction investigation that the lattice parameters of wüstite increased with CaO content dissolved in wüstite crystal. The pure wüstite as well as the wüstite doped with CaO were reduced at different temperature. The results showed that the reductions were promoted with increasing CaO content. The higher the content of CaO dissolved in wüstite crystal was, the larger the lattice parameter and the interplanar distances of wüstite became. This expansion was helpful to the migration of Fe ions and enhanced the reduction. At the early stage, the reduction of pure and doped wüstite compacts was controlled by the interfacial chemical reaction step. At the latter stage, the gaseous diffusion was the rate‐determining step for both sample types.  相似文献   

20.
A comparative reduction behavior of wüstite samples prepared from iron ore sinter was investigated to find the optimum way for reducing coke consumption and CO2 emission in blast furnace technology. A series of wüstite reduction experiments was carried out using different gas mixtures. A correlation between the experimental results and real data of blast furnaces at Egyptian Iron and Steel Company (EISCO) was demonstrated in order to optimize the coke consumption inside blast furnaces. Different theoretical models were applied on real data of blast furnaces to calculate the effect of operation parameters on the coke consumption. It was found that the wüstite reducibility can be controlled and enhanced using certain ratio of H2 and CO gases. Such kind of enhancement decreases the remaining quantity of unreduced wüstite which descends to the high temperature region of blast furnace. The theoretical analysis of real data using certain values of H2 and CO shows that increasing the amount of natural gas injection in blast furnace of EISCO will decrease the degree of direct reduction of iron oxide and consequently will decrease the amount of coke consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号