首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arjula Suresh  A.P. Harsha  M.K. Ghosh 《Wear》2009,266(1-2):184-193
Solid particle erosion behavior of polyphenylene sulfide, reinforced by short glass fibers with varying fiber content (0–40 wt%) has been studied. Steady-state erosion rates have been evaluated at different impact angles (15–90°) and impact velocities (25–66 m/s) using silica sand particles (200 ± 50 μm) as an erodent. PPS and its composites exhibited maximum erosion rate at 30° impact angle indicating ductile erosion behavior. Though PPS is a brittle thermoplastic, incubation period was found for neat resin and its composites at normal impact (α = 90°). The erosion rates of PPS composites increased with increasing amount of glass fiber. Morphology of eroded surfaces was examined using scanning electron microscopy (SEM) and possible wear mechanisms were discussed. Also, artificial neural networks (ANNs) technique has been used to predict the erosion rate based on the experimentally measured database of PPS composites. The results show that the predicted data are well acceptable when comparing them to measured values. A well-trained ANN is expected to be very helpful for prediction of wear data for systematic parameter studies.  相似文献   

2.
In this paper, wear characteristics of magnesium alloy, AZ31B, and its nano-composites, AZ31B/nano-Al2O3, processed by the disintegrated melt deposition technique are investigated. The experiments were carried out using a pin-on-disk configuration against a steel disk counterface under different sliding speeds of 1, 3, 5, 7 and 10 m/s for 10 N normal load, and 1, 3 and 5 m/s for 30 N normal load. The worn samples and wear debris were then examined under a field emission scanning electron microscopy equipped with an energy dispersive spectrometer to reveal its wear features. The wear test results show that the wear rates of the composites are gradually reduced over the sliding speed range for both normal loads. The composite wear rates are higher than that of the alloy at low speeds and lower when sliding speed further increased. The coefficient of friction results of both the alloy and composites are in the range of 0.25–0.45 and reaches minimums at 5 m/s under 10 N and 3 m/s under 30 N load. Microstructural characterization results established different dominant mechanisms at different sliding speeds, namely, abrasion, delamination, oxidation, adhesion and thermal softening and melting. An experimental wear map was then constructed.  相似文献   

3.
R.G. Zheng  Z.J. Zhan  W.K. Wang 《Wear》2010,268(1-2):72-76
A new type Cu–La2O3 composite was fabricated by internal oxidation method using powder metallurgy. Sliding wear behavior of the Cu–La2O3 composites was studied by using a pin-on-disk wear tester under dry sliding conditions with or without electrical current, rubbing against GCr15 type bearing steel disk at a constant sliding speed of 20 m/s. The influence of varying applied load and electrical current was investigated. The worn surfaces were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to determine the wear mechanisms. The results showed the Cu–La2O3 composites had an electrical conductivity of 81.9% IACS (International Annealed Copper Standard, 100% IACS = 58 MS/m) and a hardness of HV105. The wear rate of the Cu–La2O3 composite pins increased with the increase in the electrical current at high sliding speed. The main wear mechanisms of the Cu–La2O3 composites were found to be adhesive wear, abrasive wear and arc erosion.  相似文献   

4.
Two new steel-reinforced, metal-matrix composites (MMCs), Kirksite+1080 and Kirksite+M2 are developed by adding 25 wt% of AISI 1080/AISI M2 steel machining chips to a zinc-based alloy, Kirksite (4% Al and 3% Cu). The sliding wear resistance of the Zn alloy and the two MMCs, against AISI 52100 steel, is determined under increasing normal load (1–10 N) and temperature (25–150 °C), using a pin-on-disc configuration. The MMCs are found to exhibit superior wear performance under all test conditions. At room temperature, a maximum wear reduction in excess of 70% is obtained for the composites relative to the Zn-alloy at the highest load of 10 N. This reduction is as much as 86% at 150 °C and 1 N for the Kirksite+M2. The wear-reducing ability of the steel reinforcements is generally greater at the more severe contact conditions. The stability of the MMC matrices and recommended limits to the MMC operating temperatures are established using deformation measurements made via dynamic mechanical analysis. The principal wear mechanisms are analysed based on the sliding wear measurements, complemented by optical microscopy and SEM observations, and EDX microanalysis. The results show that the steel chip reinforcements are effective in improving the wear resistance of Zn alloys under severe conditions. Implications for use of low-cost machining chips as reinforcements to create MMCs for improved wear performance, and for recycling/reuse of these chips in advanced structural material systems are discussed.  相似文献   

5.
《Wear》2006,260(1-2):123-127
In this research, the wear of electroless Ni–P and Ni–P–B4C composite coatings was reviewed. Auto catalytic reduction of Ni in nickel sulfate and sodium hypophosphate bath including suspended B4C particles with different concentration was used to create composite coatings with 12, 18, 25 and 33 vol.% of B4C particles. Coatings 35 μm thick were heat treated at 400 °C for one hour in an argon atmosphere and the wear resistance and friction coefficient of heat-treated samples were determined by block-on-ring tests. All wear tests were carried out at 24 °C, 35% moisture, 0.164 m/s sliding speed and about 1000 m sliding distance. Graphs show that an electroless Ni–P–B4C composite coating with 25 vol.% of B4C had the best wear resistance against a CK45 steel counterface.  相似文献   

6.
Alireza Khoddamzadeh  Rong Liu  Xijia Wu 《Wear》2009,266(7-8):646-657
A group of novel polytetrafluoroethylene (PTFE)-based composite materials are developed for sliding bearing applications. The reinforcements include the newly developed T-401 Tribaloy alloy, which possesses better ductility compared to conventional Tribaloy alloys, spherical bronze particles, chopped carbon fibers and milled graphite. The specimens are fabricated with the compression moulding technique under different preforming and sintering cycles. The mechanical and tribological properties as well as corrosion resistance of the new composites are investigated. It is demonstrated that these properties are influenced by the type of fillers and the content level of fillers. The wear resistances of all the developed PTFE composites are much higher than that of pure PTFE with very low coefficients of friction. Among the developed composites, the mixture of 40% PTFE + 15% T-401 + 45% bronze exhibits the best combination of properties.  相似文献   

7.
Oxidation treatment with concentrated HNO3 was employed to the carbon fabric (CF) for various time intervals (30–180 min) to observe the effect of treatment on two simultaneous processes involved viz. improvement in its adhesion with the matrix and reduction of fiber strength which in turn is responsible for change in the performance properties of composites. Seven composites with untreated and acid treated CF were developed based on the polyetherimide (PEI) matrix and evaluated for adhesive wear properties under various loads (200–600 N) against mild steel disc. 90 min treated CF composite indicated the best tribological properties and showed 30% reduction in specific wear rate (K0) and 23% in coefficient of friction (μ) respectively at 600 N load. Treatment beyond this time proved detrimental for improvement in properties. Field emission scanning electron microscopy (FE-SEM) showed increase in roughness with treatment time, while atomic force microscopy (AFM) studies indicated substantial increase in roughness value. Scanning electron microscopy (SEM) of worn surfaces supported the wear mechanisms and improvement in adhesion between fiber and matrix.  相似文献   

8.
T. Hermann  T.A. Blanchet  N.F. Panayotou 《Wear》2010,268(1-2):126-132
Self-mated wear and friction of Alloy 600 superalloy was studied in a water-submersed ring-on-rod configuration, loading the side of a 6.35 mm diameter rod across the flat surface of a rotating annular ring of 100 mm outer diameter and 70 mm inner diameter producing two sliding contacts along the ring. Tests were conducted at sliding speeds of 0.178 and 0.330 m/s for sliding distances of 100 m. Normal loads of 51 and 204 N were applied, and initial Ra surface roughnesses of the rings along the sliding direction were either smooth (~0.2 μm) or rough (~7.5 μm). Increased initial ring roughness caused a ~20-fold increase in rod wear at the lighter load, whereas at the heavier load increased initial roughness only caused a ~4-fold increase in wear. At lower initial ring roughness the 4-fold decrease in normal load caused a large (one order-of-magnitude) decrease in rod wear, whereas for rings of higher initial roughness the 4-fold decrease in normal load caused only minor (2-fold or less) decreases in rod wear. Wear during this 100 m sliding distance only experienced a minor effect from the 1.8-fold change in sliding speed, as did friction. In all cases friction coefficient rapidly settled into the range 0.6–0.7, except in the cases of lower load on rings of lower initial roughness where friction coefficient remained above 1 for most of this sliding duration. At this lower load the initial ~0.2 μm rod roughnesses increased to nearly 0.8 μm by the 100 m sliding distance, whereas at the higher load this same sliding distance resulted in roughnesses returning near to the initial 0.2 μm. It was hypothesized more highly loaded cases also went through initial roughening prior to smoothening back to 0.2 μm roughness within the 100 m sliding distance, and given additional sliding the more lightly loaded cases would also experience subsequent smoothening. Increasing sliding distance to 400 m, roughnesses indicated a smoothening back to 0.2 μm level during those lightly loaded tests, with friction coefficient correspondingly dropping from 1 into the 0.6–0.7 range observed in all other cases. Extended sliding to 400 m at light loading against rings of lower initial roughness also allowed a rod wear rate which increased with increased sliding distance to be observed, approaching the same rate observed against initially rough rings within the 100 m sliding distance.  相似文献   

9.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

10.
Four kinds of paper-based friction materials reinforced with carbon fibers of 100, 400, 600 and 800 μm were prepared by paper-making processes. Experimental results showed that the friction materials became porous with fiber length increasing. The friction torque curves were flat except the sample with 100 μm fibers. The wear rate of the sample with 100 μm fibers was only 1.40×10−5 mm3/J. Tiny debris and fine scratches formed in the worn surface were the reason for excellent wear resistance of friction pairs with 100 μm fibers. The friction pairs with 400, 600 and 800 μm fibers showed typically abrasive wear and fatigue wear.  相似文献   

11.
In the present paper, friction and wear behaviors of a carbon fiber reinforced carbon–silicon carbide–titanium silicon carbide (C-SiC–Ti3SiC2) hybrid matrix composites fabricated by slurry infiltration and liquid silicon infiltration were studied for potential application as brake materials. The properties were compared with those of C/C-SiC composites. The composites containing Ti3SiC2 had not only higher friction stability coefficient but also much higher wear resistance than C/C-SiC composites. At an initial braking speed of 28 m/s under 0.8 MPa pressure, the weight wear rate of the composites containing 5 vol% Ti3SiC2 was 5.55 mg/cycle, which was only one-third of C/C-SiC composites. Self-lubricious film-like debris was formed on the composites containing Ti3SiC2, leading to the improvement of friction and wear properties. The effect of braking speed and braking pressure on the tribological properties of modified composites were investigated. The average friction coefficient was significantly affected by braking speed and braking pressure, but the wear rate was less affected by braking pressure.  相似文献   

12.
《Wear》2007,262(3-4):350-361
In this work, the tribological properties of deproteinised natural rubber (DPNR) were examined and compared with synthetic cis-1,4-polyisoprene rubber (IR), namely Natsyn 2200. The effect of adding carbon black (CB) (0, 25 and 50 phr) to both DPNR and IR on the friction and wear characteristics was investigated. Dry abrasion tests were carried out using pin-on-cylinder tribometer with abrasive paper (Diamond 50) under different operating test conditions such as applied normal load (5–35 N), sliding speed (0.3–1.5 m/s) and sliding distance (90–450 m).Experimental results showed that the addition of CB has significantly affected the wear and friction characteristics of both DPNR and IR, i.e. it reduces the abrasion weight loss by more than 70% compared to unfilled rubber, depending on the test conditions and the concentration of CB. The friction coefficient of DPNR was decreased by about 12.5% upon the addition of 50 phr CB, compared to unfilled DPNR. Meanwhile, adding (25–50 phr) CB to IR drastically deteriorates the friction coefficient, i.e. an increase in the friction by about 200% at 25 phr CB and 300% at 50 phr CB compared to unfilled IR.Finally, scanning electron microscopy (SEM) technique is employed to observe the abrasion pattern of rubber in order to correlate the experimental test results to the wear mechanisms.  相似文献   

13.
《Wear》2006,260(9-10):933-941
Sliding friction and wear characteristics of three-dimensional (3-D) braided carbon fabric reinforced epoxy resin (C3D/EP) composites were investigated. Tests were performed on a MM200 tester under normal loads of 50, 150, and 250 N and velocities of 0.42 and 0.84 m/s. A quenched medium carbon steel with a hardness of HRC 52 was used as the counterpart material. The specific wear rate and the coefficient of friction were examined as a function of testing conditions (load, velocity, and sliding distance) and material parameters (fiber volume fraction and fiber–matrix bonding). The results showed that the coefficient of friction and the specific wear rate changed considerably during the running-in period and reached stable values at the steady wear stage. Fiber volume fraction and testing conditions (load and velocity) affected the wear more significantly than the friction. It was also found that fiber–matrix bonding had an impact on the friction and wear of the 3-D composites. Furthermore, the specific wear rate decreased with the increase in the product of load and velocity. Worn surfaces and debris were observed by scanning electron microscope (SEM) and wear mechanisms were discussed in this study.  相似文献   

14.
《Wear》2006,260(4-5):401-411
In case of fabric reinforced composites of specialty polymers influence of orientation of fabric and its volume fraction on tribo-behaviour is sparingly studied. In our earlier work, we have reported on the influence of amount of Aramid fabric (AF) in polyethersulfone (PES) on abrasive wear performance. However, orientation effect of fabric with respect to abrading plane was not investigated. In this work three orientations of composites of PES containing Aramid (Kevlar 29) fabric with three concentrations 64, 72 and 83 wt.% were selected to study the influence on abrasive wear performance. Composites developed by compression molding technique were characterized for their mechanical and physical properties. The abrasive wear performance of the composites was evaluated by abrading 10 mm × 10 mm × 10 mm sample against silicon carbide (SiC) paper under various loads and two grades of abrasive papers. The fabric reinforcement enhanced the abrasive wear resistance of PES significantly (approximately 1.35–9.46 times depending on the operating conditions). It was observed that 83% fabric composite showed the highest resistance to abrasive wear and impact along with the best tensile strength and elongation properties. Its flexural strength and ILSS values, however, were the lowest. Sixty-four percent fabric composite, on the other hand, showed an exactly reverse trend among the three composites. Among the three orientations, fibres in normal and parallel (N–P) and normal and anti-parallel (N–AP) direction with respect to sliding plane proved to impart maximum wear resistance. N–P was best for light loads while N–AP was best for high loading conditions. Orientation parallel and anti-parallel (P–AP) was least beneficial in this respect. Moreover, the extent of improvement very much depended on the operating parameters such as grit size and load. Benefits endowed due to reinforcement were higher at less coarse grade paper. With increase in load, however, wear rate of composites with N–P orientation increased and for other two orientations it decreased. Thus, for severe operating conditions, N–AP orientation proved to be most beneficial. SEM studies proved supporting for understanding the influence of orientation on wear performance.  相似文献   

15.
Hong Chang  Jon Binner  Rebecca Higginson 《Wear》2010,268(1-2):166-171
Aluminium alloys, reinforced with ceramic particles or fibres, are desired materials in high performance applications due to their superior properties. In this paper, gel-cast Al2O3 foams were pressurelessly infiltrated using an Al–8 wt.% Mg alloy. The wear rates of the alloy and the Al(Mg)/Al2O3 interpenetrating composites were tested under dry sliding conditions; effects of Al2O3 foam density and cell size on the composite wear resistance under different loads and sliding distances were investigated. A ‘ploughing’ mechanism was observed in all the composites after an initial 250 m sliding distance, whilst the composites with the higher foam density show a ‘two-stage’ wear with sliding distance. The decrease in the wear rate in the second stage in the latter is attributed to an Al2O3 network protruding out of the worn surface, which protects the direct wear of the Al(Mg) alloy by the counter ball. Within the range studied, a larger cell size is preferred for better wear resistance.  相似文献   

16.
《Wear》2007,262(7-8):845-849
In this study, sliding wear behavior of newly developed Fe-base Co-free hardfacing alloy (Fe–Cr–C–Si) was investigated and compared to that of Stellite 6 and Fe-base NOREM 02 in the temperatures ranging from 300 to 575 K under a contact stress of 103 MPa (15 ksi) in pressurized water. The weight loss of Fe–Cr–C–Si was equivalent to that of Stellite 6 over all temperatures range in 100-cycle wear test. The weight loss of Fe–Cr–C–Si 1000-cycle wear test increased almost linearly with increasing temperature up to 575 K. The weight loss of NOREM 02 was nearly equivalent to that of Stellite 6 below 475 K, however, galling occurred above 475 K in 100-cycle wear test. It was also found that the lubrication effect of pressurized water on the sliding wear behavior of the alloys was negligible under the present test conditions.  相似文献   

17.
Operation of a low wear (2 × 10?5 mm3/(N-m)), low contact resistance copper sliding electrical contact was demonstrated. The wear rate of a lightly loaded copper–beryllium metal fiber sliding on a polished copper counterface was insensitive to (DC) current density values as great as 440 A/cm2 (in a brush positive or anodic configuration). Low wear and relatively low friction (μ  0.2 to 0.3) was achieved by operating the contact immersed in a liquid medium consisting of a hydrofluoroether with helium cover gas, inhibitingoxidationand providing cooling of the contact. Similar experiments performed in liquid mediums of ultrapure water and dilute (3%) hydrogen peroxide show an order of magnitude increase in wear rate and provide further insight on the role of electrochemically enhanced oxidation and the degraded contact resistance and tribological behavior of non-noble sliding electrical contacts in general. In contrast to high current density slidingin hydrofluoroether, an order of magnitude greater wear rate was observed for similar sliding conditionsin hydrogen peroxide or water without the aid of externally supplied electric potential. A conceptual model is proposed correlatingthe rate of brush wear to fatigue strength and electrochemically enhanced oxidation as a result of high current density transport through the contact. A mathematical expression was derived to calculate the approximate wear volume of a single fiber laterally contacting a slip-ring, based on direct measurement of the wear scar geometry.  相似文献   

18.
《Wear》2007,262(1-2):160-166
Dry sliding wear of Al–4Cu–xTiB2 (x = 0, 2.5, 5, 7.5 and 10 wt.%) in situ composites have been studied in the peak-aged condition using a pin-on-disc wear testing machine at different loads. The composites were prepared by the reaction of a mixture of K2TiF6 and KBF4 salts with molten alloy. The results indicate that TiB2 particles markedly improve the wear performance of the Al–4Cu alloy. The wear resistance increases with increase in the amount of TiB2. The load bearing capacity of the alloy during wear increases in presence of TiB2 particles. Study of the wear surfaces and debris of both alloy and composites using the scanning electron microscope suggests that the improvement in wear resistance is mainly due to the formation of finer debris.  相似文献   

19.
A. Mandal  B.S. Murty  M. Chakraborty 《Wear》2009,266(7-8):865-872
Dry sliding wear behaviour of A356–TiB2 composites in T6 condition was tested using a pin-on-disc wear testing machine. The composites were prepared by the reaction of a mixture of K2TiF6 and KBF4 salts with molten alloy. The wear tests were conducted at normal loads of 19.6–78.4 N and a sliding speed of 1 ms?1. A detailed SEM study of wear surface and debris was carried out to substantiate the wear results. The results indicate that wear rate of the composites is a strong function of TiB2 content rather than overall hardness of the composite. The role of Si and TiB2 particles towards the overall mechanism has been discussed.  相似文献   

20.
Wear behavior of the HVOF deposited Cr3C2–NiCr and WC–Co coatings on Fe-base steels were evaluated by the pin-on-disc mechanism. The constant normal load applied to the pin was 49 N and sliding distance was 4500 m with velocity of 1 m/s, at ambient temperature and humidity. The specific wear rate of WC–Co coating was 3 mm3/N m and Cr3C2–NiCr coating was 5.3 mm3/N m. SEM/EDAX and XRD techniques were used to analyze the worn out surface and wear debris. The Fe2O3 was identified as the major phase in the wear debris. The wear mechanism is mild adhesive wear in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号