首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cr containing amorphous carbon coatings (Cr/a-C) with varying Cr content were deposited using unbalanced magnetron sputtering. The results revealed that the chromium carbide nano-clusters were formed when the Cr content exceeded 4.9 at%. The critical load increased while the hardness decreased after the Cr element incorporation. Although the low Cr containing Cr/a-C coatings (≤4.9 at%) exhibited similar friction coefficient with a-C coatings, but the initial friction coefficient, running-in distance and wear rate of SUS440C balls all decreased. However, the Cr/a-C coatings with high Cr content (11.98–14.09 at%) would worsen the tribological properties because chromium carbides acted as abrasive wear particles during tribotests.  相似文献   

2.
《Wear》2007,262(5-6):655-665
The structure, hardness, friction and wear of tungsten nitrides prepared by d.c. reactive magnetron sputtering were investigated. The coatings were deposited with different nitrogen to argon ratios; the total pressure was kept constant. The tribological tests were performed on a pin-on-disc tribometer in terrestrial atmosphere with 100Cr6 steel, Al2O3 and Si3N4 balls as sliding counter-bodies. The wear tracks, the ball-wear scars and the wear debris were analysed by scanning electron microscopy in order to characterize the dominant wear mechanisms.The coatings exhibited different phases as a function of the nitrogen content: films with low N content exhibited the α-W phase; β-W phase was dominant for nitrogen contents from 12 to 15 at.% and β-W2N was observed for nitrogen content higher that 30 at.%. The mechanical and tribological properties of the tungsten nitride coatings were strongly influenced by the structure. The hardness and the Young's modulus values were in the ranges (29–39 GPa) and (300–390 GPa), respectively; the lowest values correspond to the coatings with the highest nitrogen content. Generally, the friction and wear rate of tungsten nitride coatings sliding against ceramic balls increased with nitrogen content reaching a maximum at 12 at.%; further increase of the nitrogen content led to a decrease of the friction and wear. The sliding with the steel balls did not wear the coatings under the selected testing conditions.  相似文献   

3.
N.W. Khun  H. Zhang  J.L. Yang  E. Liu 《Wear》2012,274(1-2):575-582
The effect of wax-containing microcapsules incorporated in silicone composite coatings deposited on aluminum (Al) alloy substrates on the tribological performance of the coatings was systematically investigated. The wax-containing microcapsules were prepared via in situ polymerization. The tribological behavior of the composite coatings was evaluated using ball-on-disk tribological test. It was found that the increase in microcapsule concentration in the composite coatings apparently reduced the friction coefficient of the coatings because the lubricant released from the broken microcapsules during the tribological test of the coatings lubricated the rubbing surfaces. The results showed that the silicone composite coatings rubbed by a smaller Cr6 steel ball (3 mm diameter) under a lower normal load (100 mN) produced higher friction coefficients via reduced complication of their underlying strong substrates compared to the same coatings tested against a larger Cr6 steel ball (6 mm diameter) under a higher normal load (1 N).  相似文献   

4.
Nickel aluminide (NiAl) intermetallic compound coatings were in situ synthesized from pre-placed mixed powders of Ni and Al by laser cladding. The phase composition and microstructure of the NiAl coatings were studied by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The effects of laser cladding parameters on the microstructure and friction and wear behavior of the NiAl coatings were investigated. It has been found that laser power density had a crucial influence on the microstructure and friction and wear behavior of NiAl coatings. Namely, the NiAl coatings synthesized under a lower power density have more dense and fine microstructure, and lower friction coefficient and wear rate. Besides, the friction and wear behavior of the laser cladding NiAl coatings is highly dependent on applied normal load and sliding speed; and the resulting coatings sliding against Si3N4 in a ball-on-disc contact mode is more suitable for tribological application at a moderate normal load of 3–7 N and sliding speed of 0.16–0.21 m/s.  相似文献   

5.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

6.
《Wear》2006,260(7-8):832-837
The reactive plasma spraying (RPS) of titanium powders in a nitrogen containing plasma gas produces thick coatings characterised by microdispersed titanium nitride phases in a titanium matrix. In this paper, the wear resistance properties of Ti–TiN coatings deposited on carbon steel substrates by means of RPS technique are studied. Wear tests were performed in block-on-ring configuration and dry sliding conditions, at different applied loads (45 and 100 N) and sliding velocities (in the range 0.4–2.0 m s−1) by using hardened and stress relieved AISI O2 disks as counterpart. At low applied load the wear volumes are low, and tend to slightly increase as the sliding velocity increases. At high applied load and low sliding velocities the highest wear volumes for the coated samples are observed, due to adhesion in the contact area with the tool steel counterpart and decohesion of coating particles. As the sliding velocity is increased, the wear volume of the coated samples tends to decrease owing to oxidation phenomena.  相似文献   

7.
The frictional and wear characteristics of nanostructured DLC films were investigated. The coatings were deposited on silicon substrates by irradiation of a mass-separated C60 ion beam with 5 keV of energy and a deposition temperature ranging from 100 to 450 °C. The effects of deposition temperature on the surface morphology, nano-structure, mechanical properties and tribological characteristics of the coatings were assessed. Results showed that deposition temperature strongly affects the nanostructure and surface morphology of the coatings. Coatings deposited at temperatures exceeding 350–400 °C exhibited an increase in surface roughness as well as compressive stress due to the formation of graphite, which led to a significant increase in the friction coefficient and wear rate. Coatings deposited at 300 °C showed the best tribological properties.  相似文献   

8.
A block-on-slip ring-type wear tester was used to investigate the tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy under 2 to 6 N applied load and 0 to 20 A electrical current. The sliding speed was maintained at 25 km/h. The wear loss of copper-impregnated metallized carbon increased with greater electrical current. Under a certain applied load, the wear loss with electrical current was minimized. The tribo-layer had an apparent effect on the friction coefficient. The wear mechanisms were complex, consisting of adhesive wear, abrasive wear and arc erosion.  相似文献   

9.
T. Hermann  T.A. Blanchet  N.F. Panayotou 《Wear》2010,268(1-2):126-132
Self-mated wear and friction of Alloy 600 superalloy was studied in a water-submersed ring-on-rod configuration, loading the side of a 6.35 mm diameter rod across the flat surface of a rotating annular ring of 100 mm outer diameter and 70 mm inner diameter producing two sliding contacts along the ring. Tests were conducted at sliding speeds of 0.178 and 0.330 m/s for sliding distances of 100 m. Normal loads of 51 and 204 N were applied, and initial Ra surface roughnesses of the rings along the sliding direction were either smooth (~0.2 μm) or rough (~7.5 μm). Increased initial ring roughness caused a ~20-fold increase in rod wear at the lighter load, whereas at the heavier load increased initial roughness only caused a ~4-fold increase in wear. At lower initial ring roughness the 4-fold decrease in normal load caused a large (one order-of-magnitude) decrease in rod wear, whereas for rings of higher initial roughness the 4-fold decrease in normal load caused only minor (2-fold or less) decreases in rod wear. Wear during this 100 m sliding distance only experienced a minor effect from the 1.8-fold change in sliding speed, as did friction. In all cases friction coefficient rapidly settled into the range 0.6–0.7, except in the cases of lower load on rings of lower initial roughness where friction coefficient remained above 1 for most of this sliding duration. At this lower load the initial ~0.2 μm rod roughnesses increased to nearly 0.8 μm by the 100 m sliding distance, whereas at the higher load this same sliding distance resulted in roughnesses returning near to the initial 0.2 μm. It was hypothesized more highly loaded cases also went through initial roughening prior to smoothening back to 0.2 μm roughness within the 100 m sliding distance, and given additional sliding the more lightly loaded cases would also experience subsequent smoothening. Increasing sliding distance to 400 m, roughnesses indicated a smoothening back to 0.2 μm level during those lightly loaded tests, with friction coefficient correspondingly dropping from 1 into the 0.6–0.7 range observed in all other cases. Extended sliding to 400 m at light loading against rings of lower initial roughness also allowed a rod wear rate which increased with increased sliding distance to be observed, approaching the same rate observed against initially rough rings within the 100 m sliding distance.  相似文献   

10.
《Wear》2006,260(4-5):351-360
α-Fe(Cr)-h-BN and α-Fe(Cr)-Fe2B-FeB coatings on X30Cr13 stainless steel are synthesized by laser melting with incorporation of hexagonal boron nitride, or by alloying of boron. The additive powders are deposited on steel before pulsed irradiation by Nd-YAG laser beam. The solidification structures of the obtained coatings are investigated by optical microscopy and X-ray diffractometry. The mechanical properties are investigated by nanoindentation and the tribological behaviour is characterized on pin-on-disc tribometer, under dry-sliding conditions with different loads and a temperature range 25–500 °C. h-BN-α-Fe(Cr) and Fe2B-α-Fe(Cr) coatings have average hardnesses 10.0 and 14.5 GPa, respectively, while hardness of untreated stainless steel is 4.2 GPa. In comparison with this untreated steel, the sliding contact on ceramic (ruby) of such coating shows a lower coefficient friction and a definitively better wear resistance.  相似文献   

11.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

12.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

13.
The friction of diamond and diamond-like carbon (DLC) materials was evaluated in reciprocating sliding wear testing under controlled relative humidity. The testing conditions were a displacement stroke of 100 μm, an oscillatory frequency of 8 Hz and a normal load of 2 N. The coefficient of friction of diamond and hydrogen-free DLC (a-C) coatings against a corundum sphere in the steady regime decreased with an increase in relative humidity. A water layer physisorbed at the interface between the mating surfaces played two major roles: acting as a lubricant and increasing the true area of contact. However, it was noticed that the friction coefficient of the hydrogenated DLC (a-C:H) coatings first increased and then decreased with increasing relative humidity in the steady state. There appeared to be a critical relative humidity for the a-C:H coatings, at which the steady-state friction reached the maximum value. The frictional behaviour of the a-C:H coatings also showed dependence on the wear test duration. The interaction between hydrogen and oxygen at the interface between the a-C:H coating and water layer was mainly responsible for such behaviour.  相似文献   

14.
Hardmetal coatings prepared by high velocity oxy-fuel (HVOF) spraying represent an advanced solution for surface protection against wear. In the current systematic study the high-temperature oxidation and unidirectional sliding wear in dry and lubricated conditions were studied. Results for a series of experiments on self-mated pairs in dry conditions as part of that work are described in this paper. Coatings with nominal compositions WC-10%Co4%Cr, WC-(W,Cr)2C-7%Ni, Cr3C2-25%NiCr, (Ti,Mo)(C,N)-29%Ni and (Ti,Mo)(C,N)-29%Co were prepared with an ethylene-fuelled DJH 2700 HVOF spray gun. Electrolytic hard chromium (EHC) coatings and bulk (Ti,Mo)(C,N)-15%NiMo (TM10) hardmetal specimens were studied for comparison. The wear behaviour was investigated at room temperature, 400 and 600 °C. For the coatings sliding speeds were varied in the range 0.1–1 m/s for a wear distance of 5000 m and a normal force of 10 N. In some cases the WC- and (Ti,Mo)(C,N)-based coatings showed total wear rates (sum of wear rates of the rotating and stationary samples) of less than 10?6 mm3/Nm, i.e., comparable to values typically measured under mixed/boundary conditions. Coefficients of friction above 0.4 were found for all test conditions. The P × V values as an engineering parameter for coating application are discussed. The microstructures and the sliding wear behaviour of the (Ti,Mo)(C,N)-based coatings and the (Ti,Mo)(C,N)-15%NiMo hardmetal are compared.  相似文献   

15.
《Wear》2002,252(11-12):1007-1015
Boriding of the surface of a tool steel using boron powder and the plasma transferred arc process was investigated. It was shown that this method is an easy and effective technique in producing uniform alloyed layers with a thickness of about 1.5 mm and a hardness between 1000 and 1300 HV.The microstructure of the borided surfaces consists of primary Fe2B-type borides and a eutectic mixture of borides and martensite. Some cracks are observed in the eutectic regions but they do not seem to critically affect the behaviour of the coatings in sliding wear.The wear rate of pin on disc tests is primarily affected by the applied load and it lies between 10−5 mm3/m for low loads and 10−2 mm3/m for high loads. Two distinct regimes of mild and severe wear are obtained separated by a critical load. Mild wear is due to the load supporting effect of borides and severe wear is due to their breakage above a critical load. The wear rate is not significantly affected by the sliding velocity and is consistent with the friction coefficient.The friction coefficient varies from 0.13 to 0.23 and depends strongly on the oxidation status of the wear track. The sliding velocity affects the sliding distance where the coefficient of friction reaches equilibrium.  相似文献   

16.
Dry sliding tests were performed for 45, 4Cr5MoSiV1 steels and 3Cr3Mo2V cast steel at 200 and 400 °C. The wears at 200 and 400 °C are of oxidative wear characteristic due to tribo-oxides formed on worn surfaces. However, the wear at 200 °C presents different wear behaviors and characteristics from the one at 400 °C. The wear at 200 °C is a typical oxidative mild wear, but the wear at 400 °C is beyond oxidative mild wear, here called oxidative wear. The characteristics of oxidative mild wear and oxidative wear were clarified.  相似文献   

17.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

18.
The tribological properties of a Fe3Al material in an aqueous solution of 1 mol/l H2SO4 corrosive environment sliding against a Si3N4 ceramic ball are studied using an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. We investigate the effects of load and sliding speed on tribological properties of the Fe3Al material. The worn surfaces of the Fe3Al material are examined by a scanning electron microscope (SEM) and an X-ray photoelectron spectroscope (XPS). It is found that the Fe3Al material exhibits better wear resistance than 1Cr18Ni9Ti stainless steel in the sulfuric acid corrosive environment. The wear rate of the Fe3Al material is on the order of 10?13 m3/m and increases with increasing load, but does not vary below the sliding speed of 0.08 m/s then dramatically increases with increasing sliding speed. The friction coefficient of the Fe3Al material is in the range of 0.1–0.28, and slightly increases with increasing load, and does not vary with the increase of sliding speed. The Fe3Al material occurs tribochemical reaction with the H2SO4 aqueous solution in the friction process. Wear mechanism of the Fe3Al material is dominated by microploughing and corrosive wear.  相似文献   

19.
《Wear》2007,262(7-8):876-882
Transfer films of PTFE/bronze composites with 5–30% volume content of bronze were prepared using a RFT friction and wear tester on surface of AISI-1045 steel bar by different sliding time (5–60 min). Tribological properties of these transfer films were studied using a DFPM reciprocating tribometer in a point contacting configuration under normal loads of 0.5, 1.0, 2.0 and 3.0 N. Thickness and surface morphology of the transfer films were investigated. It was found thickness of the transfer films slightly increased along with the increase of bronze content of corresponding composites. Increased sliding time of transfer film preparation is helpful to form transfer film with better ductibility and continuity, but sliding time almost has no effect on tribological properties of the transfer film. Higher bronze content in the composite improved tribological properties of the corresponding transfer film, i.e., reduced friction coefficient and prolonged wear life. All these transfer films are sensitive to load change. Their wear life becomes shorter along with the increase of load. SEM image of the worn surface show fatigue wear and adhesion wear have happened on the transfer film during the friction process. The author believe bronze in the transfer film effectively partaked in shear force applied on the transfer film and its good ductibility helped to improve tribological properties of the transfer films.  相似文献   

20.
Wear behavior of the HVOF deposited Cr3C2–NiCr and WC–Co coatings on Fe-base steels were evaluated by the pin-on-disc mechanism. The constant normal load applied to the pin was 49 N and sliding distance was 4500 m with velocity of 1 m/s, at ambient temperature and humidity. The specific wear rate of WC–Co coating was 3 mm3/N m and Cr3C2–NiCr coating was 5.3 mm3/N m. SEM/EDAX and XRD techniques were used to analyze the worn out surface and wear debris. The Fe2O3 was identified as the major phase in the wear debris. The wear mechanism is mild adhesive wear in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号