首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
电纺PLLA/PCL/PEG共混纤维膜的结构及性能   总被引:1,自引:0,他引:1  
采用静电纺丝技术制备了聚乳酸(PLLA)/聚己内酯(PCL)/聚乙二醇(PEG)共混纤维膜,考察了溶剂体积比、共混物共混质量比、溶液浓度对电纺纤维形貌的影响,研究了共混纤维膜的热稳定性、结晶性、力学性能及亲水性。结果表明加入PEG有效提高了共混纤维膜的热稳定性和结晶性,提高了共混纤维膜的拉伸强度、弹性模量和亲水性能。  相似文献   

3.
The aim of the present work is to examine the effect of the rheological behaviour and surface properties on the sintering of various polymers. Model polymers, liquid at room temperature and commercials materials with different viscosities and structures are used. Zero-shear viscosities and relaxation times are extracted from rheological curves. The surface tension of the materials is measured by the sessile drop method when possible. The sintering of two particles put in close vicinity is recorded using a CCD camera at regular intervals time. Two substrates with different surface tension are employed. The effects of viscosity, surface tension and relaxation time on the sintering kinetics are discussed.  相似文献   

4.
Chemical etching is an established and popular method of increasing the adhesion to such materials as polyethylene. Ultra-high-molecular-weight polyethylene (UHMWPE) fibers are exceptional candidates for composite materials except for their poor adhesion. In this research, the bulk, surface and adhesive properties of as-received and chromic acid etched UHMWPE fibers have been examined. The fiber tensile properties, surface chemistry and wettability have been characterized. The adhesion of epoxy has been characterized by the interfacial shear strength of a droplet microbond. The more than six-fold increase in interfacial shear strength observed in this work is related to the etching process. The removal of an oxygen-rich weak boundary layer, surface roughening and oxidation of the UHMWPE contribute to the enhanced adhesion.  相似文献   

5.
6.
Aligned poly(L-lactide) (PLLA)/poly(ε-caprolactone) (PCL)/functionalized multiwalled carbon nanotube (F-MWNT) composite fibrous membranes were fabricated by electrospinning. Their morphology, mechanical properties, in vitro degradation and biocompatibility were studied. With a collector rotation speed of 3000 rpm, the electrospun fibers are highly aligned and the F-MWNTs are oriented along the fiber axis, reinforcing the electrospun fibrous membranes. When the F-MWNTs are incorporated, the PLLA/PCL/F-MWNT composite fibers become thinner due to the increased electrical conductivity. However, when the F-MWNTs are increased to 3.75 wt.%, the higher viscosity and aggregation of F-MWNTs have lead to the formation of beads and a wider diameter distribution in the electrospun fibers. Also, the electrospun fibers having smaller diameter, larger porosity and lower crystallinity induced by F-MWNTs have improved the bio-degradation of the PLLA/PCL/F-MWNT fibrous membranes, which have no toxic effects on the proliferation of adipose-derived stem cells.  相似文献   

7.
可生物降解淀粉/PCL共混物性能研究   总被引:2,自引:0,他引:2  
本文研究了土豆淀粉与聚己内酯(PCL)共混型可完全生物降解材料的性能,结果表明:改性淀粉共混体系的力学性能比未改性者有显著提高。吸水性试验表明,共混体系的吸水率随PCL用量的增加而降低,偶联剂改性共混物的吸水率也有所下降。土埋生物降解试验表明,共混体系有着良好的生物降解性能。同时还考察其在活性污泥中的降解性。红外光谱测试显示,共混体系具有较好相容性和降解性能。  相似文献   

8.
9.
Innovative particle-reinforced materials made of alumina particles and cement-based matrix were designed, manufactured and tested to evaluate the potential use of ceramic aggregates in concretes. These particle-reinforced composites were tested in three-point bending and uniaxial compression conditions to determine the influence of the shape and size of the ceramic inclusions, and the addition of silica fume on the mechanical properties. A specific methodology combining post-mortem observations with a statistical analysis of tensile failure stresses (average strength and Weibull modulus) was conducted to deduce the origin of failure for each cement-based composite (porosity or ceramic particles/matrix decohesion). A remarkable correlation is observed between bending failure stress level and the average strength measured under uniaxial compression loading. As main conclusion, addition of alumina particles in a mortar appears to strengthen or to weaken the composite depending on whether silica fume is used in the cementitious matrix.  相似文献   

10.
11.
This paper presents a computer study of electrical and morphological properties of composite and nanocomposite films by help of self-made analytical software tools. Main attention is devoted to a relationship between the electrical properties and the morphology of the films. Methods of mathematical morphology are used to obtain structural parameters. A Monte Carlo method and the theory of percolation are used for the study of electrical properties. Conductivity is supposed to be either ohmic or by tunnel effect, or both in parallel. Current paths inside the composite structure form so-called fuzzy clusters below and especially close to the percolation threshold. Their study produces valuable additional information. The results of the morphological and transport analyses are compared and discussed. From them, information is searched about the processes.  相似文献   

12.
Protein adsorption on a biomaterial surface is of great importance as it usually induces unfavorable biological cascades, with the result that much surface modification research has had to be performed in an effort to prevent this. In this study, we developed surface modification methods for stainless steel, which is a representative metal for biomedical device. The stainless steels were first smoothened to different extents by electropolishing, in order to obtain a rough or smooth surface. On these two kinds of substrates, we introduced epoxide groups to the metal surface by silanization with 3-glycidoxypropyltrimethoxysilane (GPTS). Then, various polymers such as poly(ethylene glycol) (PEG), poly(tetrahydrofuran glycol) (PTG), poly(propylene glycol) (PPG) and poly(dimethylsiloxane) (PDMS) were grafted on the silanized stainless steels. Each surface modification step was confirmed by various analytical methods. Contact angle measurement revealed that the surface hydrophilicity was controllable by polymer grafting. Root-mean-square (RMS) data of atomic force microscopy showed that surface roughness was dramatically changed by electropolishing. Based on these results, the correlation between surface properties and protein adsorption was investigated. In the protein adsorption study, we observed that all of the polymer-grafted stainless steels exhibited lower protein adsorption, when compared with bare stainless steel. Moreover, a hydrophilic and smooth surface was found to be the best of choice for decreasing the protein adsorption.  相似文献   

13.
14.
15.
16.
Available experimental data are used to correlate the hemispherical integral emissivity of metals to their thermal conductivity. The dependence is approximated by an exponential function.Translated from Inzhenerno-fizicheskii Zhurnal, Vol. 61, No. 4, pp. 656–657, October, 1991.Deceased.  相似文献   

17.
18.
This paper presents a study of the EDM machining of H13 and D2 tool steels using electrodes of different diameters. Scanning electron microscopy is employed to analyze the machined surface, and the concept of a Crack Critical Line (CCL) is introduced to explore the influence of electrode size, EDM parameters and material thermal conductivity on surface cracking. The current results reveal that the surface crack distribution is influenced by the machining parameters, the electrode diameter and the material conductivity. It is noted that cracks tend not to appear when the machining is performed with a decreased pulse current and an increased pulse-on duration. Furthermore, it is observed that changing the electrode diameter causes a parallel shift of the CCL location within the crack distribution map. The intercept of the line depends on the electrode size. When small diameter electrodes are employed in the machining process, the location of the CCL shifts upwards. This causes the no-crack zone to enlarge, and therefore permits a wider choice of machining parameters to be adopted.  相似文献   

19.
Carbon aerogel is a promising material for electrochemical double layer capacitors. In this paper carbon aerogels prepared by subcritical drying method are investigated for the change in the structure and surface properties at different pyrolysis temperatures. The important relations between structure, morphology, surface area and electrical properties were studied using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), surface area measurement and cyclic voltametry. It is shown that structure and the surface functional groups play important role in enhancement of electrochemical capacitance. The specific capacitance achieved was 114 F/gm which is quite large value for subcritically prepared carbon aerogels without any kind of activation process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号