首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated sex ratio and mitochondrial DNA inheritance in pair-matings involving five female and five male individuals of the Mediterranean mussel Mytilus galloprovincialis. The percentage of male progeny varied widely among families and was found to be a characteristic of the female parent and independent of the male to which it was mated. Thus sex-ratio in Mytilus appears to be independent of the nuclear genotype of the sperm. With a few exceptions, doubly uniparental inheritance (DUI) of mtDNA was observed in all families fathered by four of the five males: female and male progeny contained the mother's mtDNA (the F genome), but males contained also the father's paternal mtDNA (the M genome). Two hermaphrodite individuals found among the progeny of these crosses contained the F mitochondrial genome in the female gonad and both the F and M genomes in the male gonad. All four families fathered by the fifth male showed the standard maternal inheritance (SMI) of animal mtDNA: both female and male progeny contained only the maternal mtDNA. These observations illustrate the intimate linkage between sex and mtDNA inheritance in species with DUI and suggest different major roles for each gender. We propose a model according to which development of a male gonad requires the presence in the early germ cells of an agent associated with sperm-derived mitochondria, these mitochondria are endowed with a paternally encoded replicative advantage through which they overcome their original minority in the fertilized egg and this advantage (and, therefore, the chance of an early entrance into the germ line) is countered by a maternally encoded egg factor.  相似文献   

2.
North American freshwater unionacean bivalves are a diverse group of nearly 300 species. Unionaceans exhibit an array of conchological, anatomical, life history, and reproductive characteristics that have figured prominently in proposed classification schemes. Recently, two very different classifications of North American unionaceans have been proposed. Depending on the classification system utilized, a very different evolutionary trajectory of anatomical and reproductive features is obtained. The lack of a robust, well corroborated phylogeny of North American unionacean bivalves hinders the progress of evolutionary and ecological studies involving these species. Here we present a mitochondrial DNA (mtDNA) based phylogeny for North American unionacean mussels and compare it to previously proposed classifications. In addition, we present a 'total evidence' phylogeny which incorporates both the mtDNA sequence data and available morphological data. The molecular and total evidence phylogenies agree largely with the conclusions of a previous study based largely on immunoelectrophoretic data. North American unionaceans can be divided into two families: the Unionidae, which is comprised of most of the species and the Margaritiferidae. Within the Uniondae are two subfamilies, the Anodontinae and Ambleminae. The resultant phylogeny was used to examine the evolution of several key anatomical features including the number of gills (demibranchs) used by females to brood developing embryos, incubation length (bradytictic vs tachytictic), larval (glochidial) tooth structures, and shell texture. Both molecular and total evidence phylogenies indicate several of the aforementioned characters evolved independently or were subsequently lost or gained in several lineages.  相似文献   

3.
In each of the mussel species Mytilus edulis and M. trossulus there exist two types of mtDNA, the F type transmitted through females and the M type transmitted through males. Because the two species produce fertile hybrids in nature, F and M types of one may introgress into the other. We present the results from a survey of a population in which extensive hybridization occurs between these two species. Among specimens classified as "pure" M. edulis or "pure" M. trossulus on the basis of allozyme analysis, we observed no animal that carried the F or the M mitotype of the other species. In most animals of mixed nuclear background, an individual's mtDNA came from the species that contributed the majority of the individual's nuclear genes. Most importantly, the two mtDNA types in post-F1 male hybrids were of the same species origin. We interpret this to mean that there are intrinsic barriers to the exchange of mtDNA between these two species. Because such barriers were not noted in other hybridizing species pairs (many being even less interfertile than M. edulis and M. trossulus), their presence in Mytilus could be another feature of the unusual mtDNA system in this genus.  相似文献   

4.
We used a set of informative mtDNA and Y-chromosome-specific markers to determine the origin of maternal and paternal lineages in a sample of 41 Uruguayan black individuals. We found that 20 maternal lineages were African, 13 were Amerindian, and 5 were Caucasian. In three individuals we were unable to determine the ethnic origin of the mtDNA lineages. Of the 22 males analyzed we found 4 Y chromosomes of African origin, 5 of Caucasian origin, and 13 of undetermined ancestry. Our results suggest that mtDNA and Y-chromosome-specific DNA variants may be a useful tool in determining the level of mtDNA and Y chromosome ethnic introgression in a population of a given ethnic origin.  相似文献   

5.
In an attempt to decrease the incidence of driving under the influence of alcohol (DUI), some alcohol-serving establishments have installed blood-alcohol level (BAL) feedback devices. These devices are meant to increase awareness of intoxication and result in the avoidance of DUI. However, studies in the US, Canada, and New Zealand (e.g., J. F. Oates, 1976; J. Calvert-Boyanowsky and E. O. Boyanowsky, 1980; P. M. Hurst and P. G. Wright, 1981) indicate that BAL feedback does not deter intoxicated individuals from DUI. Moreover, there is some evidence that it may increase alcohol consumption. The education of alcohol servers about effective techniques they can use to prevent DUI is suggested as a more effective means of preventing DUI. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Recent studies of mitochondrial DNA (mtDNA) variation among marine turtle populations are consistent with the hypothesis that females return to beaches in their natal region to nest as adults. In contrast, less is known about breeding migrations of male marine turtles and whether they too are philopatric to natal regions. Studies of geographic structuring of restriction fragment and microsatellite polymorphisms at anonymous nuclear loci in green turtle (Chelonia mydas) populations indicate that nuclear gene flow is higher than estimates from mtDNA analyses. Regional populations from the northern and southern Great Barrier Reef were distinct for mtDNA but indistinguishable at nuclear loci, whereas the Gulf of Carpentaria (northern Australia) population was distinct for both types of marker. To assess whether this result was due to reduced philopatry of males across the Great Barrier Reef, we determined the mtDNA haplotypes of breeding males at courtship areas for comparison with breeding females from the same three locations. We used a PCR-restriction fragment length polymorphism approach to determine control region haplotypes and designed mismatch primers for the identification of specific haplotypes. The mtDNA haplotype frequencies were not significantly different between males and females at any of the three areas and estimates of Fst among the regions were similar for males and females (Fst = 0.78 and 0.73, respectively). We conclude that breeding males, like females, are philopatric to courtship areas within their natal region. Nuclear gene flow between populations is most likely occurring through matings during migrations of both males and females through nonnatal courtship areas.  相似文献   

7.
DNA analysis is making a valuable contribution to the understanding of human evolution [1]. Much attention has focused on mitochondrial DNA (mtDNA) [2] and the Y chromosome [3] [4], both of which escape recombination and so provide information on maternal and paternal lineages, respectively. It is often assumed that the polymorphisms observed at loci on mtDNA and the Y chromosome are selectively neutral and, therefore, that existing patterns of molecular variation can be used to deduce the histories of populations in terms of drift, population movements, and cultural practices. The coalescence of the molecular phylogenies of mtDNA and the Y chromosome to recent common ancestors in Africa [5] [6], for example, has been taken to reflect a recent origin of modern human populations in Africa. An alternative explanation, though, could be the recent selective spread of mtDNA and Y chromosome haplotypes from Africa in a population with a more complex history [7]. It is therefore important to establish whether there are selective differences between classes (haplotypes) of mtDNA and Y chromosomes and, if so, whether these differences could have been sufficient to influence the distributions of haplotypes in existing populations. A precedent for this hypothesis has been established for mtDNA in that one mtDNA background increases susceptibility to Leber hereditary optic neuropathy [8]. Although studies of nucleotide diversity in global samples of Y chromosomes have suggested an absence of recent selective sweeps or bottlenecks [9], selection may, in principle, be very important for the Y chromosome because it carries several loci affecting male fertility [10] [11] and as many as 5% of males are infertile [11] [12]. Here, we show that one class of infertile males, PRKX/PRKY translocation XX males, arises predominantly on a particular Y haplotypic background. Selection is, therefore, acting on Y haplotype distributions in the population.  相似文献   

8.
Partial mitochondrial cytochrome b gene sequences reveal two deeply differentiated mtDNA lineages in anoa dwarf buffaloes (Bubalus depressicornis) from the studbook herd in European zoos. Three matrilinear lineages of lowland anoas (depressicornis type) contributed three rather similar sequence haplotypes, but one remarkably distinct haplotype was observed exclusively in mountain anoas (quarlesi type) descended from one founder female. The carriers of the distinctive mtDNA haplotype were also distinguished by several chromosomal and phenotypic peculiarities too. The differentiation between the mtDNA lineages of anoa approached or even surpassed the genetic divergence between some uncontested species of wild cattle. The depth of this haplotype divergence in anoas is discussed against the background of the phylogenetic age of these paleoendemic inhabitants of a predator-free island refugium, Sulawesi, who are among the most plesiomorphic living bovines. The studbook breeding of captive anoas as a safeguard against extinction might profit from such population genetic markers. These cytochrome b gene sequences were unable to resolve the phylogeny of nine bovine taxa robustly, except the divergence of Bubalus, Synceros, Bison, and Bos (sensu lato) genera.  相似文献   

9.
Mitochondrial DNA diversity in the Kuna Amerinds of Panamá   总被引:2,自引:0,他引:2  
Mitochondrial DNA (mtDNA) haplotype diversity was determined for 63 Chibcha-speaking Kuna Amerinds sampled widely across their geographic range in eastern Panamá. The Kuna data were compared with mtDNA control region I sequences from two neighboring Chibchan groups, the Ng?bé and the Huetar; two Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche; and with a single Na-Dene group, the Haida of the Pacific Northwest. The Kuna exhibited low levels of mitochondrial diversity as had been reported for the other two Chibchan groups and, furthermore, carried only two of the four Amerind founding lineages first reported by Schurr and coworkers (Am. J. Hum. Genet. 1990; 46: 613-623). We posit that speakers of modern Chibchan languages (henceforth referred to as the Chibcha) passed through a population bottleneck caused either by ethnogenesis from a small founding population and/or subsequent European conquest and colonization. Using the approach of Harpending et al. (Curr. Anthropol. 1993; 34: 483-496), we estimated a Chibchan population bottleneck and subsequent expansion approximately 10,000 years before present, a date consistent with a bottleneck at the time of Chibchan ethnogenesis. The low mtDNA diversity of Kuna Amerinds, as opposed to the generally high levels of mtDNA variation detected in other Amerind groups, demonstrates the need for adequate sampling of cultural or racial groups when attempting to genetically characterize human populations.  相似文献   

10.
The human AIDS viruses human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) represent cross-species (zoonotic) infections. Although the primate reservoir of HIV-2 has been clearly identified as the sooty mangabey (Cercocebus atys), the origin of HIV-1 remains uncertain. Viruses related to HIV-1 have been isolated from the common chimpanzee (Pan troglodytes), but only three such SIVcpz infections have been documented, one of which involved a virus so divergent that it might represent a different primate lentiviral lineage. In a search for the HIV-1 reservoir, we have now sequenced the genome of a new SIVcpzstrain (SIVcpzUS) and have determined, by mitochondrial DNA analysis, the subspecies identity of all known SIVcpz-infected chimpanzees. We find that two chimpanzee subspecies in Africa, the central P. t. troglodytes and the eastern P. t. schweinfurthii, harbour SIVcpz and that their respective viruses form two highly divergent (but subspecies-specific) phylogenetic lineages. All HIV-1 strains known to infect man, including HIV-1 groups M, N and O, are closely related to just one of these SIVcpz lineages, that found in P. t. troglodytes. Moreover, we find that HIV-1 group N is a mosaic of SIVcpzUS- and HIV-1-related sequences, indicating an ancestral recombination event in a chimpanzee host. These results, together with the observation that the natural range of P. t. troglodytes coincides uniquely with areas of HIV-1 group M, N and O endemicity, indicate that P. t. troglodytes is the primary reservoir for HIV-1 and has been the source of at least three independent introductions of SIVcpz into the human population.  相似文献   

11.
The marine toad, Bufo marinus, has a broad natural distribution extending from the south-west of the USA to southern Peru and the central Amazon. It was introduced to several localities in the Caribbean and Pacific Oceans to control sugar cane pests. We sequenced 468 bp of mitochondrial DNA (mtDNA) containing the ND3 gene, and flanking tRNA genes from toads spanning the broad natural and introduced ranges. Consistent with the known history of introductions and expected effects of serial bottlenecks, mtDNA within introduced populations in Hawaii and Australia was uniform and most closely related to samples from eastern Venezuela and French Guiana. However, mtDNA nucleotide diversity in the geographic region spanning the source areas is also relative low (0.18-0.46%) and the absence of variation in the introduced populations precludes quantitative assessment of the reduction in genetic diversity. Unexpectedly, there was a large phylogeographic break (5.4% sequence divergence) within the natural range separating populations east and west of the Venezuelan Andes. We hypothesize that the two major lineages of B. marinus were isolated by the uplift of the eastern Andean cordillera which was completed approximately 2.7 Ma. Another species of the marinus group, B. paracnemis, had mtDNA paraphyletic, with marinus, being nested within the eastern lineage. Thus, at least one speciation event within the marinus group postdates the split within marinus. These findings suggest that the taxonomy of B. marinus should be re-evaluated and that the search for pathogens to control Australian populations should be conducted in populations from both lineages in the natural range.  相似文献   

12.
13.
Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.  相似文献   

14.
Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as "primary" LHON mutations. Fifteen other "secondary" LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended to be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed chi2-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that approximately 75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases.  相似文献   

15.
Analysis of variation in the hypervariable region of mitochondrial DNA (mtDNA) has emerged as an important tool for studying human evolution and migration. However, attempts to reconstruct optimal intraspecific mtDNA phylogenies frequently fail because parallel mutation events partly obscure the true evolutionary pathways. This makes it inadvisable to present a single phylogenetic tree at the expense of neglecting equally acceptable ones. As an alternative, we propose a novel network approach for portraying mtDNA relationships. For small sample sizes (< approximately 50), an unmodified median network contains all most parsimonious trees, displays graphically the full information content of the sequence data, and can easily be generated by hand. For larger sample sizes, we reduce the complexity of the network by identifying parallelisms. This reduction procedure is guided by a compatibility argument and an additional source of phylogenetic information: the frequencies of the mitochondrial haplotypes. As a spin-off, our approach can also assist in identifying sequencing errors, which manifest themselves in implausible network substructures. We illustrate the advantages of our approach with several examples from existing data sets.  相似文献   

16.
Dog-like marsupials (superfamily Borhyaenoidea) were the largest predacious mammals during the Tertiary period in South America. They are critical to our understanding of marsupial origin, phylogeny and palaeobiogeography because they have been related to various marsupial lineages of several continents: didelphoids (mainly New World, but also Europe, Asia and Africa), pediomyid, stagodontids (North America), dasyuroids (Australia) and deltatheroidans (predominantly Asian). These relationships, based mainly on dental morphology, have been discussed and rejected several times. Here we report the discovery of exceptionally well preserved skulls and skeletons, referrable to the didelphoid Andinodelphys, which shed new light on the phylogenetic and palaeobiogeographic origin of dog-like marsupials. The skulls of Mayulestes (boryhyaenoid), Andinodelphys and Pucadelphys (didelphoids) from the early Palaeocene epoch of Bolivia are the oldest known for American marsupials. Comparison of their basicranial anatomy suggests that dog-like marsupials are closely related to an early didelphimorphian radiation in South America, rather than to Asiatic (deltatheroidan), North American (stagodontid), or Australian (dasyuroid) lineages.  相似文献   

17.
Historical biogeography seeks to explain contemporary distributions of taxa in the context of intrinsic biological and extrinsic geological and climatic factors. To decipher the relative importance of biological characteristics vs. environmental conditions, it is necessary to ask whether groups of taxa with similar distributions share the same history of diversification. Because all of the taxa will have shared the same climatic and geological history, evidence of shared history across multiple species provides an estimate of the role of extrinsic factors in shaping contemporary biogeographic patterns. Similarly, differences in the records of evolutionary history across species will probably be signatures of biological differences. In this study, we focus on inferring the evolutionary history for geographical populations and closely related species representing three genera of primary freshwater fishes that are widely distributed in lower Central America (LCA) and northwestern Colombia. Analysis of mitochondrial gene trees provides the opportunity for robust tests of shared history across taxa. Moreover, because mtDNA permits inference of the temporal scale of diversification we can test hypotheses regarding the chronological development of the Isthmian corridor linking North and South America. We have focused attention on two issues. First, we show that many of the distinct populations of LCA fishes diverged in a relatively brief period of time thus limiting the phylogenetic signal available for tests of shared history. Second, our results provide reduced evidence of shared history when all drainages are included in the analysis because of inferred dispersion events that obscure the evolutionary history among drainage basins. When we restrict the analysis to areas that harbour endemic mitochondrial lineages, there is evidence of shared history across taxa. We hypothesize that there were two to three distinct waves of invasion into LCA from putative source populations in northwestern Colombia. The first probably happened in the late Miocene, prior to the final emergence of the Isthmus in the mid-Pliocene; the second was probably coincident with the rise of the Isthmus in the mid-Pliocene, and the third event occurred more recently, perhaps in the Pleistocene. In each case the geographical scale of the dispersion of lineages was progressively more limited, a pattern we attribute to the continuing development of the landscape due to orogeny and the consequent increase in the insularization of drainage basins. Thus, the fisheye view of LCA suggests a complex biogeographic history of overlaid cycles of colonization, diversification, sorting and extinction of lineages.  相似文献   

18.
The complete mitochondrial DNA (mtDNA) molecule of the domestic sheep, Ovis aries, was sequenced, together with part of the mtDNA of a specimen representing the other major O. aries haplotype group. The length of the complete ovine mtDNA presented is 16,616 nucleotides (nt). This length is not absolute, however, due to heteroplasmy caused by the occurrence of different numbers of a 75-nt-long tandem repeat in the control region. The sequence data were included in analyses of intraspecific ovine molecular differences, molecular comparisons with bovine mtDNAs, and phylogenetic analyses based on complete mtDNAs. The comparisons with bovine mtDNAs were based on the central domains of the ovine control regions, representing both major ovine haplotype groups, and the corresponding domains of Bos taurus and B. indicus. The comparisons showed that the difference between the bovids was 1.4 times greater than the intraspecific ovine difference. These findings suggest that the strains of wild sheep from which domestic sheep originated were more closely related than were the B. primigenius subspecies which gave rise to B. indicus and B. taurus cattle. Datings based on complete mtDNAs suggest that the bovine and ovine lineages diverged about 30 million years before present. This dating is considerably earlier than that proposed previously.  相似文献   

19.
A literature review is conducted on the phylogenetic discontinuities in mtDNA sequences of 252 taxonomic species of vertebrates. About 140 of these species (56%) were subdivided clearly into two or more highly distinctive matrilineal phylogroups, the vast majority of which were localized geographically. However, only a small number (two to six) of salient phylogeographic subdivisions (those that stand out against mean within-group divergences) characterized individual species. A previous literature summary showed that vertebrate sister species and other congeners also usually have pronounced phylogenetic distinctions in mtDNA sequence. These observations, taken together, suggest that current taxonomic species often agree reasonably well in number (certainly within an order-of-magnitude) and composition with biotic entities registered in mtDNA genealogies alone. In other words, mtDNA data and traditional taxonomic assignments tend to converge on what therefore may be "real" biotic units in nature. All branches in mtDNA phylogenies are nonanastomose, connected strictly via historical genealogy. Thus, patterns of historical phylogenetic connection may be at least as important as contemporary reproductive relationships per se in accounting for microevolutionary unities and discontinuities in sexually reproducing vertebrates. Findings are discussed in the context of the biological and phylogenetic species concepts.  相似文献   

20.
A fosmid library with inserts containing approximately 40 kb of marine bacterial DNA (J. L. Stein, T. L. Marsh, K. Y. Wu, H. Shizuya, and E. F. DeLong, J. Bacteriol. 178:591-599, 1996) yielded four clones with 16S rRNA genes from the order Planctomycetales. Three of the clones belong to the Pirellula group and one clone belongs to the Planctomyces group, based on phylogenetic and signature nucleotide analyses of full-length 16S rRNA genes. Sequence analysis of the ends of the genes revealed a consistent mismatch in a widely used bacterium-specific 16S rRNA PCR amplification priming site (27F), which has also been reported in some thermophiles and spirochetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号