首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-speed imaging technique was used to investigate the effects of inhibitors and activators of protein kinase C (PKC) on the [Ca2+]i transients and contraction of fura-2 loaded rat ventricular cardiac myocytes. The amplitude of the [Ca2+]i transient was reduced following treatment with 100 nM phorbol 12,13-dibutyrate (PDBu), whereas the PKC inhibitors staurosporine (0.5 microM) and calphostin C (10 microM) increased [Ca2+]i transient amplitude, elevated basal [Ca2+]i and slowed the decay of the [Ca2+]i transient. These changes were paralleled by similar alterations in the rate and extent of cell shortening. The activity of nitrendipine-sensitive Ca2+ channels was monitored indirectly as the rate of Mn2+ quench of cytosolic fura-2 in electrically-paced cells. PDBu reduced Mn2+ influx by six-fold, whereas staurosporine and calphostin C increased the influx rate by eight-fold and seven-fold over basal quench, respectively. The caffeine releasable Ca2+ pool was reduced in the presence of PDBu and increased transiently in presence of staurosporine. The effects of PKC activation and inhibition on sarcoplasmic reticulum Ca2+ content may be secondary to alterations of sarcolemmal Ca2+ influx. However, the PKC inhibitors also decreased the rate of sarcoplasmic reticulum Ca2+ uptake in permeabilized myocytes, suggesting that a direct effect of PKC on the sarcoplasmic reticulum may contribute to the prolongation of the [Ca2+]i transient under these conditions. The present work demonstrates that basal PKC activity has a potent depressant effect, mediated primarily through inhibition of sarcolemmal Ca2+ influx, which may play a key role in setting the basal tone of cardiac muscle.  相似文献   

2.
Noradrenaline (NA) (1-10 microM), dibutyryl-cAMP (1-5 mM), and forskolin (10-20 microM) increased cytosolic Ca2+ concentration ([Ca2+]i) in isolated arginine-vasopressin (AVP)-containing neurons in the hypothalamic supraoptic nucleus (SON). The NA-induced increase in [Ca2+]i in AVP-containing neurons was abolished by a specific alpha1-antagonist, prazosin (1 microM) and was markedly reduced when treated with a protein kinase A (PKA) blocker, H89 (40 microM). The NA-induced [Ca2+]i was not altered by a protein kinase C (PKC) inhibitor, calphostin C (0.1 microM) and a PKC activator, TPA (100 nM). In general, NA, a known neurotransmitter in the SON, activates AVP-containing neurons via alpha1-receptor which is linked to stimulation of cAMP-PKA-regulated Ca2+ signaling pathway.  相似文献   

3.
Lead characteristically perturbs processes linked to the calcium messenger system. This study was undertaken to determine the role of PKC in the Pb2+ induced rise of [Ca2+]i. [Ca2+]i was measured using the divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy) ethane N, N,N',N'-tetraacetic acid (5F-BAPTA) and 19F-NMR in the osteoblast cell line, ROS 17/2.8. Treatment of cells with Pb2+ at 1 and 5 microM produced a rise in [Ca2+]i from a basal level of 125 nM to 170 nM and 230 nM, respectively, while treatment with phorbol 12-myristate 13-acetate (PMA) (10 microM), an activator of PKC, produced a rise in [Ca2+]i to 210 nM. Pretreatment with calphostin C, a potent and highly selective inhibitor of PKC activation failed to produce a change in basal [Ca2+]i and prevented any rise in [Ca2+]i in response to Pb2+. To determine whether Pb2+ acts directly on PKC, we measured the Pb2(+)-dependent activation of phosphatidylserine/diolein-dependent incorporation of 32P from ATP into histone and endogenous TCA precipitable proteins in the 100,000 X g supernatant from homogenized ROS 17/2.8 cells. The free concentrations of Pb2+ and Ca2+ were set using 5F-BAPTA; and [Ca2+] and [Pb2+] in the PKC reaction mixtures were confirmed by 19F-NMR. We found that Pb2+ activates PKC in the range of 10(-11)-10(-7) M, with an activation constant of 1.1 X 10(-10) M, whereas Ca2+ activates PKC in the range from 10(-8) to 10(-3) M, with an activation constant of 3.6 X 10(-7) M. These data suggest that Pb2+ activates PKC in ROS 17/2.8 cells and that Pb2+ activation of PKC mediates the documented rise in [Ca2+]i and, perhaps, other toxic effects of Pb2+.  相似文献   

4.
The effects of two protein kinase C (PKC) inhibitors, calphostin C and staurosporine, on the in vitro ovulation of goldfish (Carassius auratus) oocytes were investigated. Ovulation was stimulated by prostaglandin (PG) F2 alpha (PGF2 alpha, 2.0 micrograms/ml), by sodium orthovanadate (0.1 mM), by a combination of the phorbol ester phorbol 12-myristate-13-acetate (PMA, 0.1 micrograms/ml) and calcium ionophore A23187 (0.05 micrograms/ml), by thapsigargin (0.2 micrograms/ml), and by elevated pH (8.1). In addition, the effects of these inhibitors on the PKC activity of the goldfish follicle wall was determined by use of a specific peptide substrate phosphorylation assay. At 0.1 microM, staurosporine significantly blocked ovulation induced by all agents. However, at lower (0.01 microM) levels it blocked only PMA/A23187-induced ovulation. In contrast, calphostin significantly blocked only PMA/A23187-induced ovulation, although there was a decrease in pH-induced ovulation at lower calphostin concentrations. Both calphostin and staurosporine blocked follicular PKC activity at levels that were inhibitory to ovulation. In addition, staurosporine significantly blocked PKC activity at levels even lower than those needed to block ovulation. The combined results suggest that orthovanadate, PGF2 alpha, and thapsigargin do not require PKC activation for the induction of ovulation, whereas PMA/A23187 does.  相似文献   

5.
Mammalian eggs are ovulated in metaphase II of meiosis, in a state characterized by high levels of cyclin B and of active maturation promoting factor (MPF). This arrest is mediated by an activity referred to as cytostatic factor (CSF) which prevents the degradation of cyclin. Fertilization triggers a train of Ca2+ spikes which is responsible for the decrease in activity of both MPF and CSF. The decline in MPF however much precedes that in CSF. Experimental observations on mammalian eggs indicate that the kinetics of cell cycle resumption much depends on the temporal pattern of the repetitive Ca2+ spikes. Here, we propose a theoretical model which accounts for Ca(2+)-induced relief from metaphase II arrest in mammalian eggs. The model is based on the fact that Ca2+/calmodulin kinase II (CaMKII) activation is the primary event leading to inactivation of both CSF and MPF. To account for experimental observations, it has to be assumed that CaMKII activation affects the level of the active form of the anaphase promoting complex (APC), which initiates the degradation of cyclin, through two pathways characterized by different time scales. Thus, we hypothesize that CaMKII activation by Ca2+ leads to the transformation of a mediator protein from a form which stimulates the inactivation of the APC into a form which gradually and indirectly induces the deactivation of CSF. In consequence, a sufficient number of Ca2+ spikes first triggers the decrease of MPF, thus allowing the egg to enter in interphase, and later that of CSF. Finally, when CSF is low and when Ca2+ oscillations have stopped, the level of MPF can increase again, a phenomenon that would correspond to the first mitosis. This model also accounts for the observed dependence of the time of entry in interphase (marked by the appearance of the pronuclei) on the frequency of Ca2+ spikes, as well as for the possible entry in metaphase III arrest, a pathological state of the egg which results from an insufficient activation by Ca2+. This study provides some theoretical prediction as to the time of the first mitosis as a function of the temporal pattern of Ca2+ oscillations.  相似文献   

6.
Indirect studies suggested that protein kinase C (PKC) has a role in sperm motility and the acrosome reaction. Physiological inducers of the sperm acrosome reaction include progesterone, which can increase intracellular calcium ([Ca2+]i), tyrosine phosphorylation of proteins and chloride efflux in human spermatozoa. PKC may be involved in progesterone-stimulated acrosome reaction, although controversial results have been obtained concerning the effect of PKC inhibition on progesterone-stimulated [Ca2+]i increase. In the present study, we investigated the direct effect of progesterone on the activity of PKC, as well as the effect of a panel of PKC inhibitors on progesterone-stimulated [Ca2+]i increase and tyrosine phosphorylation of proteins. We found that progesterone stimulates sperm PKC activity and that PKC inhibition with staurosporine and bisindolylmaleimide partially reversed the effect of progesterone on acrosome reaction, indicating an involvement of the enzyme in the effect of the steroid. We next evaluated the effect of three different PKC inhibitors (sangivamycin, staurosporine and bisindolylmaleimide) on progesterone-stimulated [Ca2+]i increase. Neither short-term (15 min) nor long-term (90 min) preincubation with any of the three compounds had a substantial effect on the stimulatory effect of progesterone on sperm [Ca2+]i. Nor was responsiveness to progesterone affected by either short-term (determining activation of PKC) or long-term (determining down-regulation of PKC) incubation with the tumour promoter phorbol myristate acetate (PMA), a known non-physiological stimulator of PKC. These results indicate that progesterone-stimulated calcium influx is independent of PKC activation. In addition, we found that preincubation with PKC inhibitors had a stimulatory effect per se on tyrosine phosphorylation of sperm proteins. When compared with the appropriate control, the effect of progesterone on tyrosine phosphorylation was slightly (but not significantly) reduced by the inhibitors, sangivamycin, staurosporine and bisindolylmaleimide, but was significantly inhibited by calphostin C. These results do not permit a final conclusion on the involvement of PKC in progesterone-stimulated tyrosine phosphorylation of sperm proteins. However, the lack of effect of PMA on tyrosine phosphorylation indicates that PKC stimulation is not sufficient to induce this effect. In conclusion, our results indicate that PKC plays a role in progesterone-induced acrosome reaction and that progesterone-stimulated PKC activation is downstream to stimulation of calcium influx by the steroid.  相似文献   

7.
The heparin-binding protein vascular endothelial growth factor (VEGF) is a highly specific growth factor for endothelial cells. VEGF binds to specific tyrosine kinase receptors, which mediate intracellular signaling. We investigated 2 hypotheses: (1) VEGF affects intracellular calcium [Ca2+]i regulation and [Ca2+]i-dependent messenger systems; and (2) these mechanisms are important for VEGF's proliferative effects. [Ca2+]i was measured in human umbilical vein endothelial cells using fura-2 and fluo-3. Protein kinase C (PKC) activity was measured by histone-like pseudosubstrate phosphorylation. PKC isoform distribution was observed with confocal microscopy and Western blot. Inhibition of PKC isoforms was assessed by specific antisense oligonucleotides (ODN) for the PKC isoforms. VEGF (10 ng/mL) induced a transient increase in [Ca2+]i followed by a sustained elevation. The sustained [Ca2+]i plateau was abolished by EGTA. Pertussis toxin also abolished the plateau phase, whereas the initial peak was not affected. The PKC isoforms alpha, delta, epsilon, and zeta were identified in endothelial cells. VEGF induced a translocation of PKC-alpha and PKC-zeta toward the nucleus and the perinuclear area, whereas cellular distribution of PKC-delta and PKC-epsilon was not influenced. Cell exposure to TPA led to a down-regulation of PKC-alpha and reduced the proliferative effect of VEGF. VEGF-induced endothelial cell proliferation also was reduced by the PKC inhibitors staurosporine and calphostin C. Specific down-regulation of PKC-alpha and PKC-zeta with antisense ODN reduced the proliferative effect of VEGF significantly. Our data show that VEGF induces initial and sustained Ca2+ influx. VEGF leads to the translocation of the [Ca2+]i-sensitive PKC isoform alpha and the atypical PKC isoform zeta. Antisense ODN for these PKC isoforms block VEGF-induced proliferation. These findings suggest that PKC isoforms alpha and zeta are important for VEGF's angiogenic effects.  相似文献   

8.
We used the cell-attached patch clamp configuration to examine the effect of basolateral cyclosporin A (CsA) exposure on low conductance K+ channels found in the principal cell apical membrane of rabbit cortical collecting tubule (CCT) primary cultures. Baseline K+ channel activity, measured as mean NPo (number of channels x open probability), was 2.7 +/- 1.1 (N = 29). NPo fell by 69% (0.84 +/- 0.32; N = 32) in cultures pretreated with 500 ng/ml CsA for 30 minutes prior to patching. Chelation of intracellular [Ca2+]i (10 mM BAPTA/AM; N = 8) or removal of extracellular Ca2+ (N = 9), but not prevention of [Ca2+]i store release (10 microM TMB-8; N = 7), abolished CsA-induced inhibition. This suggested that CsA effects were mediated by an initial rise in [Ca2+]i via Ca2+ influx. Either 25 nM AVP (N = 10) or 0.25 microM thapsigargin (N = 8) (causing IP3-dependent and -independent release of [Ca2+]i stores, respectively) augmented, while 25 pM (N = 6) or 250 pM AVP (N = 8) reversed CSA-induced channel inhibition. Apical membrane protein kinase C (PKC) activation with 0.1 microM phorbol ester, PMA (N = 8) or 10 microM synthetic diacylglycerol, OAG (N = 7), mimicked (mean NPo = 0.99 +/- 0.40) the inhibitory effect of CsA. Apical PKC inhibition by prolonged apical exposure to PMA (N = 10) or 100 microM D-sphingosine (N = 6) blocked CsA's effect. Cyclic AMP increasing maneuvers, 10 microM forskolin (N = 5) or 0.5 mM db-cAMP (N = 8), stimulated basal K+ channel activity in the absence of CsA. In Conclusion: (1) basolateral exposure to CsA inhibits the activity of apical membrane 13 pS channels responsible for physiologic K+ secretion in rabbit CCT principal cells. (2) The inhibition is mediated by changes in intracellular Ca2+ and activation of apical PKC. (3) Pharmacologic AVP (nM) augments CsA-induced inhibition by releasing intracellular Ca2+ stores; more physiologic AVP (pM) attenuates channel inhibition, probably through cAMP generation. (4) Inhibition of apical secretory K+ channels by CsA likely contributes to decreased kaliuresis and clinical hyperkalemia observed in patients on CsA therapy.  相似文献   

9.
Transient elevations in the concentration of free cytosolic calcium ion ([Ca2+]i) promote cell phase transitions in early embryonic division and persist even if these transitions are blocked. These observations suggest that a [Ca2+]i oscillator is an essential timing element of the early embryonic "master clock." We explore this possibility by coupling a [Ca2+]i oscillator model to an early embryonic cell cycle model based on the protein interactions that govern the activity of the M-phase-promoting factor (MPF). We hypothesize three dynamical states of the MPF system and choose parameter sets to represent each. We then investigate how [Ca2+]i dynamics may control early embryonic division in both sea urchin and Xenopus embryos. To investigate both systems, distinct [Ca2+]i profiles matching those observed in sea urchin embryos (in which [Ca2+]i exhibits sharp transients) and Xenopus embryos (in which [Ca2+]i is elevated and oscillates sinusoidally) are imposed on each of the hypothesized dynamical states of MPF. In the first hypothesis, [Ca2+]i oscillations entrain the autonomous MPF oscillator. In the second and third hypotheses, where the MPF system rests in excitatory and bistable states, respectively, [Ca2+]i oscillations drive MPF activation cycles. Simulation results show that hypotheses two and three, in which a [Ca2+]i oscillator is a fundamental timing element of the master clock, best account for key experimental observations and the questions that they raise. Finally, we propose experiments to elucidate further [Ca2+]i regulation and the fundamental components of the early embryonic master clock.  相似文献   

10.
The effect of protein kinase C (C-kinase) on the Ca(2+)-activated K+ channel (KCa-channel) was studied in cultured smooth muscle cells from porcine coronary artery by the patch-clamp technique. In cell-attached patches, bath application of phorbol 12-myristate 13-acetate (PMA, 1 microM), a C-kinase activator, significantly decreased the open probability of the activated KCa-channel in the presence of the calcium ionophore A23187 (20 microM), which increases intracellular Ca2+. This decrease in the open probability was reversed by subsequent application of staurosporine (1 nM), a C-kinase inhibitor. Application of 1-oleoyl-2-acetylglycerol (OAG, 30 microM) or 1,2-dioctanoylglycerol (DG8; 30 microM), activators of C-kinase, also inhibited KCa-channel activation by A23187, and these inhibitions were also reversed by staurosporine. PMA (1 microM) also inhibited KCa-channel activation by dibutylyl cyclic AMP (db-cAMP, 2 mM) or caffeine (30 mM). In inside-out patches, bath application of the C-kinase fraction from rat brain in the presence of ATP (1 mM) and PMA (1 microM) markedly inhibited the KCa-channel. These results indicate that activation of C-kinase inhibits the KCa-channel and may cause membrane depolarization and vascular contraction.  相似文献   

11.
The effects of berberine, an isoquinoline alkaloid, were investigated in human myeloma cells. In cells with intracellular Ca2+ concentration ([Ca2+]i) = 10 nM, the depolarizing square pulses from -80 mV elicited an instantaneous outward current with an inactivation. This outward current was voltage dependent, activating at -30 mV and showed inactivation with repetitive depolarization, and was hence believed to be n type voltage-activated K+ current (IK(V)). Berberine (30 microM) produced a prolongation in the recovery of IK(V) inactivation. In cells with [Ca2+]i = 1 microM, berberine also inhibited A23187-induced IK(Ca). Berberine (1-300 microM) caused the inhibition of IK(V) and IK(Ca) in the concentration-dependent manners. The IC50 values of berberine-induced inhibition of IK(V) and IK(Ca) were approximately 15 microM and 50 microM, respectively. In inside-out configurations, berberine inside the pipette suppressed the activity of K(Ca) channels without changing the single channel conductance. Berberine also inhibited the proliferation of this cell line and the IC50 value of berberine-induced inhibition of cell proliferation was 5 microM. Thus, the cytotoxic effect of berberine in cancer cells may be partially explained by its direct blockade of these K+ channels.  相似文献   

12.
Di- and tripeptides and peptide mimetics such as beta-lactam antibiotics are efficiently reabsorbed from the tubular lumen by a high-affinity peptide transporter. We have recently identified and characterized this H+-coupled high-affinity peptide transport system in the porcine proximal tubular cell line LLC-PK1. Here we describe for the first time the regulation of the renal high-affinity peptide cotransporter at the cellular level. Uptake of 5 microM 3H-D-Phe-L-Ala into LLC-PK1 cells was significantly increased by lowering [Ca2+]in and decreased by increasing [Ca2+] in. Moreover, it was shown that the [Ca2+]in effects on peptide transport activity were dependent on Ca2+ entry from the extracellular site (e.g., via a store-regulated capacitative Ca2+ influx). Protein kinase C (PKC) was found to transmit the effects of [Ca2+]in on peptide transport. Although we demonstrate by pHin measurements that the PKC inhibitor staurosporine did decrease the transmembrane H+ gradient and consequently should have reduced the driving force for peptide uptake, the only effect on transport kinetics of 3H-D-Phe-L-Ala observed was a significant decrease in Km from 22.7+/-2.5 microM to 10.2+/-1.9 microM with no change in maximal velocity.  相似文献   

13.
Recent studies have demonstrated that the naturally occurring perylenequinone antibiotic calphostin C is a potent inhibitor of protein kinase C and can induce apoptosis in some tumor cell lines by an as yet unknown mechanism. Here we demonstrate that calphostin C induces dose-dependent apoptosis in DT40 chicken lymphoma B-cells, and targeted disruption of lyn, syk, btk, PLCgamma2, or IP3R genes does not prevent or attenuate its cytotoxicity. In our study, calphostin C also induced rapid apoptosis in human acute lymphoblastic leukemia (ALL) cell lines ALL-1 (BCR-ABL+ pre-pre-B ALL), RS4;11 (MLL-AF4+ pro-B ALL), NALM-6 (pre-B ALL), DAUDI (Burkitt's/B-cell ALL), MOLT-3 (T-ALL), and JURKAT (T-ALL), whereas other potent PKC inhibitors did not. In biochemical studies, calphostin C was discovered to induce rapid calcium mobilization from intracellular stores of ALL cell lines, and its cytotoxicity against ALL cell lines was well correlated with the magnitude of this calcium signal. Calphostin C-induced apoptosis was markedly suppressed by BAPTA/AM, a cell-permeable Ca2+ chelator as well as NiCl2, an inhibitor of Ca2+/Mg2+-dependent endonucleases. Inhibition of the Ca2+/calmodulin-dependent phosphatase calcineurin with perfluoreperazine dimadeate (a calmodulin antagonist) or cyclosporin A (a specific inhibitor of calcineurin) also reduced the magnitude of calphostin C-induced apoptosis in ALL cell lines. Calphostin C was capable of inducing calcium mobilization and apoptosis in freshly obtained primary leukemic cells from children with ALL. Taken together, our results provide unprecedented evidence that calphostin C triggers a Ca2+-dependent apoptotic signal in human ALL cells.  相似文献   

14.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

15.
The effect of glucocorticoid(GC) on peak cytosolic free calcium net increment (delta[Ca2+]i) induced by high-K+ was detected with MiraCal Image System. The main results were as follows: (1) Corticosterone(B) could inhibit delta[Ca2+]i in a time-dependent and concentration-dependent manner. (2) The inhibitory effect of B could be mimicked by bovine-serum albumin conjugated corticosterone (B-BSA) also in a dose-dependent manner. (3) G-protein inhibitor, either PTX or GDP beta S significantly reduced the inhibitory effect of B and B-BSA on delta[Ca2+]i (4) PMA, a stimulator for protein kinase C(PKC), could inhibit delta[Ca2+]i. (5) Although the inhibitors of PKC, chelerythrine chloride and bisindolylamide I per se had no influence on delta[Ca2+]i, but they significantly antagonized the inhibitory effect of B and B-BSA on delta[Ca2+]i. It is postulated that GC inhibit delta[Ca2+]i induced by high-K+ through a membrane mechanism and by a pathway involving G-protein and PKC.  相似文献   

16.
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.  相似文献   

17.
Previously, we have shown that tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, increases the synthesis and release of endothelin-1 (ET-1), a potent vasoactive peptide from human non-pigmented ciliary epithelial (HNPE) cells, in a protein kinase C (PKC)-dependent manner. Diacylglycerol (DAG) and intracellular calcium ([Ca2+]i) are well known activators of PKC. Some cytokines induce PKC activation by stimulating phospholipase C that hydrolyzes phosphatidylinositol bisphosphate (PIP2) into IP3 (intracellular calcium mobilizer) and DAG. In this study, the existence of a similar pathway was evaluated in HNPE cells treated with TNF-alpha, using intracellular calcium ([Ca2+]i) measurements, PKC translocation assays and thin-layer chromatography (TLC) for quantification of DAG. Incubation times for agonists and inhibitors ranged from 1-30 minutes. The increase in DAG levels with TNF-alpha treatment was consistent with the observed translocation of the calcium-dependent PKC alpha isoform from the cytosol to the plasma membrane. However, these observations were not accompanied by a concomitant increase in [Ca2+]i. Similar translocation responses were observed with phorbol ester (phorbol 12-myristate 13-acetate) treatment. Our results indicate that TNF-alpha-induced PKC activation in HNPE cells occurs as a result of elevated DAG levels and is not due to an increase in intracellular calcium. Activated PKC, could enhance the pro-inflammatory responses of TNF-alpha in part by increasing the production of endothelins in the eye.  相似文献   

18.
Morphine administered as a subcutaneous implant was previously reported to inhibit the mitogen-induced initial increases in cytoplasmic free calcium concentrations ([Ca2+]i) in mouse splenocytes. The present studies were initiated to determine whether morphine affects signal transduction subsequent to activation of protein kinase C (PKC) in immune cells. Administration of morphine significantly inhibited the phorbol myristate acetate (PMA)-stimulated increase in interleukin-2 receptor (IL-2R) expression in both CD4+ and CD8+ mouse T cells. In contrast, morphine treatment had no effect on PMA/calcium ionophore (A23187)-induced increase in IL-2 secretion, suggesting a selective inhibition of IL-2R expression. Simultaneous administration of morphine and the opiate antagonist naltrexone blocked the effect of morphine on CD4+ cells. The inhibition of PMA-stimulated IL-2R expression was not reproduced by incubating splenocytes with morphine (10(-8)-10(-5) M). These results suggest that this effect of morphine was mediated through opiate-receptors, but not directly via opiate receptors located on T cells. Moreover, adrenalectomy abolished this effect of morphine in CD4+ but not CD8+ T cells, suggesting that the inhibitory effect of morphine on IL-2R expression in CD4+ T cells may be mediated through a morphine-induced increase in corticosteroid levels. Thus, opiate-induced immunosuppression may involve an inhibition of post-PKC events, especially IL-2R expression, as well as impairment of earlier events in the activation of immune cells such as the increase in [Ca2+]i.  相似文献   

19.
20.
Addition of 20 microM calcium ionophore A23187 to cultured PK (pig kidney embryo) cells gave an increase of Ca2+ in cytosol by more than 10 times. The maximum of [Ca2+] was achieved in 1-2 min after introduction of the drug. Later on [Ca2+] gradually decreased, and after 30 min of incubation with A23187 [Ca2+] was 3-5 times above normal level. Immunofluorescent and electron microscope studies showed no alterations in the microtubule system of interphase cells after 1-30 min treatment. The electro microscope study showed that-following 1.5 min introduction of the drug the random orientation of material and daughter centrioles changed: most of them settled down at an angle more, than 74 degrees to the substrate surface. After 3 min of A23187 treatment more than half of maternal centrioles were oriented perpendicular to the substrate surface. After 5 min of A23187 treatment, the percentage of maternal centrioles with perpendicular orientation was the same and this orientation remained for 30 min. The percentage of perpendicular daughter centrioles decreased after 3 min of treatment, and after 30 min their orientation was random. We suggest that the perpendicular orientation of centrioles to the substrate surface is mediated through centrosome-associated calcium-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号