首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural genes for the flavoprotein subunit and cytochrome c subunit of p-cresol (4-methylphenol) methylhydroxylase (PCMH) from Pseudomonas putida NCIMB 9869 (National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland) and P. putida NCIMB 9866 were cloned and sequenced. The genes from P.putida NCIMB 9869 were for the plasmid-encoded A form of PCMH, and the genes from P.putida NCIMB 9866 were also plasmid encoded. The nucleotide sequences of the two flavoprotein genes from P.putida NCIMB 9869 and P.putida NCIMB 9866 (pchF69A and pchF66, respectively) were the same except for 5 bases out of 1,584, and the translated amino acid sequences were identical. The nucleotide sequences of the genes for the cytochrome subunits of PCMH from the two bacteria (pchC69A and pchC66) varied by a single nucleotide in their 303-base sequences, and the translated amino acid sequences differed by a single residue at position 41 (Asp in PchC69A and Ala in PchC66). Both cytochromes had 21-residue signal sequences, as expected for periplasmic proteins, and these sequences were identical. On the other hand, no signal sequences were found for the flavoproteins.pchF69A and pchC69A were expressed, separately or together, in Escherichia coli JM109 and P.putida RA4007, with active PCMH produced in both bacteria. The E. coli-expressed flavocytochrome was purified. Our studies indicated that the E.coli-expressed subunits were identical to the subunits expressed in P.putida NCIMB 9869: molecular weights, isoelectric points, UV-visible spectra, and steady-state kinetic parameters were the same for the two sets of proteins. The subunits readily associated upon mixing two crude extracts of E.coli, one extract containing PchC69A and the other containing PchF69A. The courses of association of PchC69A and PchF69A were essentially identical for pure E. coli-expressed subunits and pure P. putida 9869-expressed subunits. E. coli-expressed PchC69A and PchF69A contained covalently bound heme and covalently bound flavin adenine dinucleotide, respectively, as the proteins expressed in nature.  相似文献   

2.
3.
Thermus thermophilus HB8 cells grown under reduced dioxygen tensions contain a substantially increased amount of heme A, much of which appears to be due to the presence of the terminal oxidase, cytochrome ba3. We describe a purification procedure for this enzyme that yields approximately 100 mg of pure protein from 2 kg of wet mass of cells grown in < or = 50 microM O2. Examination of the protein by SDS-polyacrylamide gel electrophoresis followed by staining with Coomassie Blue reveals one strongly staining band at approximately 35 kDa and one very weakly staining band at approximately 18 kDa as reported earlier (Zimmermann, B.H., Nitsche, C.I., Fee, J. A., Rusnak, F., and Münck, E. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5779-5783). By contrast, treatment of the gels with AgNO3 reveals that the larger polypeptide stains quite weakly while the smaller polypeptide stains very strongly. These results suggested the presence of two polypeptides in this protein. Using partial amino acid sequences from both proteins to obtain DNA sequence information, we isolated and sequenced a portion of the Thermus chromosome containing the genes encoding the larger protein, subunit I (cbaA), and the smaller protein, subunit II (cbaB). The two polypeptides were isolated using reversed phase liquid chromatography, and their mole percent amino acid compositions are consistent with the proposed translation of their respective genes. The two genes appear to be part of a larger operon, but we have not extended the sequencing to identify initiation and termination sequences. The deduced amino acid sequence of subunit I includes the six canonical histidine residues involved in binding the low spin heme B and the binuclear center Cu(B)/heme A. These and other conserved amino acids are placed along the polypeptide among alternating hydrophobic and hydrophilic segments in a pattern that shows clear homology to other members of the heme- and copper-requiring terminal oxidases. The deduced amino acid sequence of the subunit II contains the CuA binding motif, including two cysteines, two histidines, and a methionine, but, in contrast to most other subunits II, it has only one region of hydrophobic sequence near its N terminus. Alignment of these two polypeptides with other cytochrome c and quinol oxidases, combined with secondary structure analysis and previous spectral studies, clearly establish cytochrome ba3 as a bona fide member of the superfamily of heme- and copper-requiring oxidases. The alignments further indicate that cytochrome ba3 is phylogenetically distant from other cytochrome c and quinol oxidases, and they substantially decrease the number of conserved amino acid residues.  相似文献   

4.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. To identify alternative oxidases, we isolated several mutants from B. stearothermophilus defective in the caa3-type oxidase activity [Sakamoto, J. et al (1996) FEMS Microbiol. Lett. 143, 151-158]. A novel oxidase was isolated from membrane preparations of one of the mutants, K17. The oxidase was composed of two subunits with molecular masses of 56 and 19 kDa, and contained protoheme IX, heme O, heme A, and Cu in a ratio of 1:0.7:0.2:3. CO difference spectra indicate that the high-spin heme is mainly heme O. These results suggest that the enzyme belongs to the heme-copper oxidase family and is a cytochrome b(o/a)3-type oxidase, whose high-spin heme is mainly heme O and partly heme A. The enzyme oxidized cytochrome c-551, which is a membrane-bound lipoprotein of thermophilic Bacillus. The turnover rate of the activity (Vmax = 190 s[-1]) and its affinity for cytochrome c-551 (Km = 0.15 microM) were much higher than those for yeast and equine heart cytochromes c. The oxidase activity was enhanced by the presence of salts and inhibited by sodium cyanide with a Ki value of 19 microM. The enzyme kinetics suggests that cytochrome c-551 is the natural substrate to this oxidase. Furthermore, the oxidase had similarity to cytochrome ba3-type oxidase from Thermus thermophilus in the subunit composition, partial amino acid sequence, and prosthetic groups, and therefore is suggested to belong to a unique subgroup of the heme-copper oxidase family together with the Thermus enzyme and archaeal oxidases such as Sulfolobus SoxABCD.  相似文献   

5.
The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of alpha-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.  相似文献   

6.
The structural gene for translation initiation factor IF2 from Thermus thermophilus was identified on the basis of the N-terminal amino acid sequence of intact T thermophilus IF2 and an internal 25 kDa IF2 fragment. A total of 5135 bp was cloned and sequenced, comprising the open reading frames for p15A, NusA, p10A, IF2, p10B and SecD, which may form an operon. There are pronounced similarities between the operon arrangement and primary sequence of the T thermophilus genes and proteins, respectively, and their counterparts from other organisms. The T thermophilus infB gene was expressed to a high level in E coli. Four hundred milligrams of homogenous T thermophilus IF2 were prepared from 60 g of overproducing cells.  相似文献   

7.
Recent experimental data show that some human genetic diseases are due to mutations in proteins which influence their trafficking and lead to retaining of proteins in the endoplasmic reticulum or their unproper processing. In this paper a hypothesis is proposed that these mutations are connected with an incomplete protein folding, blocking it at the stage of the kinetic molten globule or even earlier. If so, the specific drugs against these diseases may be ligands and other factors which facilitate the correct protein folding.  相似文献   

8.
The recA gene of a thermophilic eubacterial strain, Thermus thermophilus (T.th.) HB8, was cloned from a genomic DNA library by Southern hybridization using a gene-internal fragment amplified by the polymerase chain reaction (PCR) method as the probe. The gene encoded a 36 kDa polypeptide whose amino acid sequence showed 61% identity with that of the Escherichia coli RecA protein. Characteristic amino acid changes between the two RecA proteins were found. In the amino acid composition of the T.th. RecA protein, the number of Pro residues was increased, the number of Cys residues was decreased, and Lys residues were replaced by Arg, Asp by Glu, Thr by Val, and Ile by Val or Leu. These changes are supposed to stabilize the native protein conformation against heat denaturation. The amino acid residues in the nucleotide binding site of the protein and in the protein-protein interaction site responsible for the oligomer formation were well conserved. The T.th. recA gene has the ability to complement the ultraviolet light (UV) sensitivity of a E. coli recA deletion mutant. Thus, the thermophilic bacterium has a RecA protein whose function will be common to the E. coli RecA protein.  相似文献   

9.
The mechanism of unfolding of ferricytochrome c induced by the surfactant sodium dodecyl sulfate has been studied by heme absorption, tryptophan fluorescence, circular dichroism, resonance Raman scattering, stopped-flow and time-resolved resonance energy transfer to obtain a comprehensive view of the whole process. Unfolding occurred at an almost specific molecular ratio of SDS/cytochrome c in the concentration range (20-50 microM) studied here. However there appears to be a point at approximately 0.6 mM SDS where unfolding begins to occur for lower cytochrome c concentrations. The kinetics of unfolding revealed only a single transition with a rate constant of 33 s(-1) (at 298 K, [SDS] = 8.7 mM) and activation energy barrier of approximately 16 kJ/mol, indicating that other associated steps, if any, are too fast to be significantly populated. The free energy change (deltaG(o)) involved with the unfolding transition was estimated to be about 16.8 kJ/mol. The CD spectrum at 220 nm of SDS-unfolded cytochrome c shows only a partial decrease (25%), indicating that a significant amount of helical structure remains folded in contrast to a complete loss of helical structure in GdnHCl-denatured cytochrome c. The heme structure in SDS-unfolded cytochrome c, as deduced from heme absorption and resonance Raman spectra, shows a major population (approximately 95%) of mis-ligated histidine to the heme which acts as a kinetic trap in the folding process. The structural changes associated with cytochrome c unfolding were also monitored by time-resolved resonance energy transfer which shows a drastic increase in tryptophan fluorescence lifetime from 12 ps in the native protein to 0.63 ns in the unfolded one, associated with a movement of Trp59 by 10 A away from heme. The maximum entropy method analysis of fluorescence decay indicated the growth of various conformational substates in SDS-unfolded cytochrome c in contrast to narrowly distributed conformations in the native protein. The refolding was comprised of three kinetic steps; the first was significantly fast (approximately 8 ms) and was assigned to the dissociation of His26 that paves the protein towards correct folding pathway. The other two slower steps probably arise from chain misorganization and prolyl isomerization. The absence of a burst-phase amplitude supports the idea that the burst phase observed in the folding from completely unfolded cytochrome c corresponds to a molecular collapse that produces significant secondary structure. The partially unfolded state represents a unique intermediate state in the folding pathway.  相似文献   

10.
During folding of globular proteins, the molten globule state was observed as an equilibrium intermediate under mildly denaturing conditions as well as a transient intermediate in kinetic refolding experiments. While the high compactness of the equilibrium intermediate of alpha-lactalbumin has been verified, direct measurements of the compactness of the kinetic intermediate have not been reported until now. Our dynamic light scattering measurements provide a complete set of the hydrodynamic dimensions of bovine alpha-lactalbumin in different conformational states, particularly in the kinetic molten globule state. The Stokes radii for the native, kinetic molten globule, equilibrium molten globule, and unfolded states are 1.91, 1.99, 2.08, and 2.46 nm, respectively. Therefore, the kinetic intermediate appears to be even more compact than its equilibrium counterpart. Remarkable differences in the concentration dependence of the Stokes radius exist revealing strong attractive but repulsive intermolecular interactions in the kinetic and equilibrium molten globule states, respectively. This underlines the importance of extrapolation to zero protein concentration in measurements of the molecular compactness.  相似文献   

11.
The aspartate aminotransferase gene (AspAT, EC 2.6.1.1) of an extremely thermophilic bacterium, Thermus thermophilus HB8, was cloned and sequenced, and its gene product was overproduced. The purified T. thermophilus AspAT was stable up to about 80 degrees C at neutral pH. T. thermophilus AspAT was strictly specific for acidic amino acid substrates, such as aspartate, glutamate, and the respective keto acids. The gene coding for T. thermophilus AspAT showed that it comprised 1,155 bp with a high G+C content (70 mol%), and encoded a 385-residue protein with a molecular weight of 42,050. The amino acid sequence of T. thermophilus AspAT deduced from its gene showed about 15, 46, and 29% homology with those from Escherichia coli, Bacillus sp. YM-2, and Sulfolobus solfataricus, respectively. When the amino acid sequence of T. thermophilus AspAT was compared with that of E. coli AspAT, the number of Cys was found to have decreased from 5 to 1, that of Asn from 23 to 9, that of Gln from 16 to 8, and that of Asp from 20 to 13, all of which are known to be relatively labile at high temperatures. Conversely, the number of Pro was increased from 15 to 25, Arg from 22 to 32, and Glu 27 to 37. As shown by the E. coli AspAT structure, there was a marked tendency for the extra prolyl residues to be located around the surface of the molecule. This was quite different from that in the case of RecA protein, which shows an increased number of prolyl residues in the interior of its molecule. Different strategies of different proteins as to prolyl contribution to thermostability have been suggested. Despite the high degree of conservation of active-site residues, Arg292 in E. coli AspAT, which interacts with the distal carboxylate of the substrate, was not found in T. thermophilus AspAT. Arg89 may complement the function of Arg292.  相似文献   

12.
Oligonucleotide-directed mutagenesis was used to obtain elongation factor G from Thermus thermophilus with the G16V mutation in its GTP-binding domain. Functional studies of the mutated protein and elongation factor G from E. coli were carried out. The data revealed that the G16V mutant retains high thermostability, has an increased ribosome-dependent GTPase activity, and its translation activity in cell-free translation system is equal to that of the factor G from E. coli. The mutated protein with an uncleavable GTP analog also has an increased affinity to the ribosomes.  相似文献   

13.
We demonstrate that a surfactant-stabilized molten globule intermediate exists for recombinant human growth hormone (rhGH), is very hydrophobic, and tends to form aggregates. Characterization of this intermediate included equilibrium denaturation measured by electron paramagnetic resonance (EPR) and CD spectroscopy, assessment of aggregation during refolding, and fluorescence studies of its binding to the hydrophobic probe, 1-anilinonapthalene-8-sulfonate (1,8-ANS). We have found that at 4.5 M guanidinium hydrochloride (GuHCl), a molten globule intermediate of rhGH is stabilized and results in significant aggregation upon refolding. This intermediate is populated by the addition of the nonionic surfactant, Tween. This surfactant also reduces the extent of aggregation during refolding of rhGH from 4.5 M GuHCl. Overall, our studies reveal that rhGH forms a molten globule-like intermediate during folding and this intermediate self-associates. This self-association is reduced upon formation of a Tween-rhGH complex. Tween also binds to the native protein. Thus, nonionic surfactants such as Tween may act like molecular chaperones in facilitating protein folding while not altering the native conformation.  相似文献   

14.
Oxidized Escherichia coli thioredoxin (Trx) is a small protein of 108 residues with one disulfide bond (C32-C35 essentially involved in the activity) and no prosthetic moieties, which folds into a structural motif containing a central twisted beta-sheet flanked by helices that is found in many larger proteins. The kinetics of refolding of Trx in vitro have been investigated using a newly developed active site titration assay and continuous or stopped-flow (SF) methods in conjunction with circular dichroism (CD) and fluorescence (Fl) spectroscopy. These studies revealed the presence of early folding intermediates with "molten globule or pre-molten globule" characteristics. Measurements of the ellipticity at 222 nm indicated that about 68% of the total change associated with refolding occurred during the dead time (4 ms) of the stopped-flow instrument, suggesting the formation of substantial secondary structure. The reconstruction of the far-UV CD spectrum of the burst intermediate using combined continuous and stopped-flow methods showed the formation of a defined secondary structure that contains more beta-structure than the native state. Kinetic measurements using SF far-UV CD and Fl over a wide range (0.087-6 M) of GuHCl concentrations at two temperatures (6 and 20 degreesC) demonstrated that the population formed during the 4 ms dead time contained multiple species that are stabilized mainly by hydrophobic interactions and undergo further folding along alternative pathways. One of these species leads directly and rapidly to the native state as demonstrated by active site titration, while the two others fold into a fourth intermediate that is slowly converted to the native protein. Double-jump experiments suggest that the heterogeneity in folding behavior results from proline isomerizations occurring in the unfolded state. Conversely, the accumulation of the burst intermediate does not depend on proline isomerizations.  相似文献   

15.
A prfA gene encoding polypeptide release factor RF1 was cloned from Thermus thermophilus. T thermophilus RF1 shares 68% homology with Escherichia coli RF1, and its overproduction reduced readthrough translation of UAG, not of UGA, in the lacZ gene. Rapid purification of T thermophilus RF1 was achieved by T7-RNA polymerase driven overexpression of T thermophilus RF1 protein with a C-terminal histidine tag.  相似文献   

16.
Two soluble flavoproteins, purified from Escherichia coli cytosol and identified as flavodoxin and NADPH-flavodoxin (ferredoxin) reductase (flavodoxin reductase), have been found in combination to support the 17 alpha-hydroxylase activities of heterologously expressed bovine 17 alpha-hydroxylase cytochrome P450 (P450c17). Physical characteristics of the two flavoproteins including absorbance spectra, molecular weights, and amino-terminal sequences are identical with those reported previously for E. coli flavodoxin and flavodoxin reductase. Flavodoxin reductase, possessing FAD as a cofactor, is able to reconstitute P450c17 activities only in the presence of flavodoxin, an FMN-containing protein, and NAD(P)H. Reducing equivalents are utilized more effectively from NADPH than NADH by flavodoxin reductase. E. coli flavodoxin binds P450c17 directly and with relatively high affinity (apparent Ks approximately 0.2 microM) at low ionic strength, as evidenced by a change in spin state of the P450c17 heme iron upon titration with flavodoxin. This apparent spin shift is attenuated at moderate ionic strengths (100-200 mM KCl). In addition, bovine P450c17 binds reversibly to flavodoxin Sepharose in an ionic strength-dependent manner. These data implicate charge pairing as being important for the interaction between flavodoxin and P450c17. We propose that the amino acid sequence similarity between E. coli flavodoxin-flavodoxin reductase and the putative FMN, FAD, and NAD(P)H binding regions of cytochrome P450 reductase provides the basis for the reconstitution of P450c17 activities by this bacterial system.  相似文献   

17.
The hierarchy of lattice Monte Carlo models described in the accompanying paper (Kolinski, A., Skolnick, J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338-352, 1994) is applied to the simulation of protein folding and the prediction of 3-dimensional structure. Using sequence information alone, three proteins have been successfully folded: the B domain of staphylococcal protein A, a 120 residue, monomeric version of ROP dimer, and crambin. Starting from a random expanded conformation, the model proteins fold along relatively well-defined folding pathways. These involve a collection of early intermediates, which are followed by the final (and rate-determining) transition from compact intermediates closely resembling the molten globule state to the native-like state. The predicted structures are rather unique, with native-like packing of the side chains. The accuracy of the predicted native conformations is better than those obtained in previous folding simulations. The best (but by no means atypical) folds of protein A have a coordinate rms of 2.25 A from the native C alpha trace, and the best coordinate rms from crambin is 3.18 A. For ROP monomer, the lowest coordinate rms from equivalent C alpha s of ROP dimer is 3.65 A. Thus, for two simple helical proteins and a small alpha/beta protein, the ability to predict protein structure from sequence has been demonstrated.  相似文献   

18.
Proteins denature at low pH because of intramolecular electrostatic repulsions. The addition of salt partially overcomes this repulsion for some proteins, yielding a collapsed conformation called the A-state. A-states have characteristics expected for the molten globule, a notional kinetic protein folding intermediate. Here we show that the addition of neutral sugars to solutions of acid-denatured equine ferricytochrome c induces formation of the A-state in the absence of added salt. We characterized the structure and stability of the sugar-induced A-state with circular dichroism spectropolarimetry (CD) and NMR-monitored hydrogen-deuterium exchange experiments. We also examined the stability of the sugar-induced A-state as a function of sugar size and concentration. The results are interpreted using several models and we conclude that the stabilizing effect is consistent with increased steric repulsion between the protein and the sugar solutions.  相似文献   

19.
The basis of protein stability has been investigated by the structural comparison of themophilic enzymes with their mesophilic counterparts. A number of characteristics have been found that can contribute to the stabilization of thermophilic proteins, but no one is uniquely capable of imparting thermostability. The crystal structure of 3-isopropylmalate dehydrogenase (IPMDH) from the mesophiles Escherichia coli and Salmonella typhimurium have been determined by the method of molecular replacement using the known structure of the homologous Thermus thermophilus enzyme. The structure of the E. coli enzyme was refined at a resolution of 2.1 A to an R-factor of 17.3%, that of the S. typhimurium enzyme at 1.7 A resolution to an R-factor of 19.8%. The three structures were compared to elucidate the basis of the higher thermostability of the T. thermophilus enzyme. A mutant that created a cavity in the hydrophobic core of the thermophilic enzyme was designed to investigate the importance of packing density for thermostability. The structure of this mutant was analyzed. The main stabilizing features in the thermophilic enzyme are an increased number of salt bridges, additional hydrogen bonds, a proportionately larger and more hydrophobic subunit interface, shortened N and C termini and a larger number of proline residues. The mutation in the hydrophobic core of T. thermophilus IPMDH resulted in a cavity of 32 A3, but no significant effect on the activity and thermostability of the mutant was observed.  相似文献   

20.
Site-directed mutagenesis has been used to produce variants of a tryptic fragment of bovine liver cytochrome b5 in which Glu44 and Glu56 are mutated to alanine. The reduction potentials measured by spectroelectrochemical titration (in the presence of 1 mM (Ru(NH3)6)3+, pH 7.0 and I=0.1 M) are 4.5, 6.0, 6.0 and 7.5 mV versus the standard hydrogen electrode (SHE) for the wild-type and E44A, E56A and E44/56A mutants of cytochrome b5, respectively. A comparative two-dimensional NMR study of cytochrome b5 and its E44/56A mutant in water solution has been achieved. Resonance assignments of side-chains have been completed successfully. The NMR results suggest that the secondary structures and global folding of the E44/56A mutant remain unchanged, but the mutation of both Glu44 and Glu56 to hydrophobic alanine may lead to the two helices containing mutated residues contracting towards the heme center. The inner mobility of the Gly42 approximately Glu44 segment in cytochrome b5 may be responsible for the difference of the binding mode between Glu44 and Glu56 with cytochrome c. The binding between cytochrome c and cytochrome b5 was studied by optical difference spectra of cytochrome c and variants of cytochrome b5. The association constants (KA) for the wild-type, E44A, E56A, and E44/56A mutants of cytochrome b5 with cytochrome c, are 4.70(+/-0. 10)x10(6) M-1, 1.88(+/-0.03)x10(6) M-1, 2.70(+/-0.13)x10(6) M-1, and 1.14(+/-0.05)x10(6) M-1, respectively. This is indicative that both Glu44 and Glu56 are involved in the complex formation between cytochrome b5 and cytochrome c. The reduction of horse heart ferricytochrome c by recombinant ferrocytochrome b5 and its mutants has been studied. The rate constant of the electron transfer reaction between ferricytochrome c and wild-type ferrocytochrome b5 (1.074(+/-0.49)x10(7) M-1 s-1) is higher than those of the mutant protein E44A (8.98(+/-0.20)x10(6) M-1 s-1), E56A (8.76(+/-0. 39)x10(6) M-1 s-1), and E44/56A (8.02(+/-0.38)x10(6) M-1 s-1) at 15 degreesC, pH 7.0, I=0.35 M. The rate constants are strongly dependent on ionic strength and temperature. These studies, by means of a series of techniques, provide conclusive results that the interaction between cytochrome b5 and cytochrome c is electrostatically guided, and, more importantly, that both Glu44 and Glu56 participate in the electron transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号