首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cyclins A and B1 were assembled with the cdk2 or cdc2 protein to reconstitute their respective kinase activities in vitro. Both cyclins complemented either cdk2 or cdc2, yielding kinase activities that supported the phosphorylation of histone H1. Activation of cdk2-catalyzed H1 kinase activity by cyclin A required a 10-min preincubation of the two components, whereas cdc2 kinase supported phosphate incorporation without a detectable time lag upon the addition of cyclin B1, suggesting a slower association rate of cdk2 with cyclin A compared with cdc2 and cyclin B1. Both cdk2 and cyclin A, as well as cdc2 and cyclin B1, formed stable complexes in the absence of ATP and substrate that could be isolated after glycerol gradient centrifugation. Incubation of the isolated complexes with ATP and histone H1 supported the phosphorylation of the substrate. Cyclin A-activated cdk2 or cdc2 phosphorylated p107, a pRB-related cellular protein, 10 times more effectively than the cyclin B1-complexed kinases. This was most likely due to a direct association of cyclin A with p107 (Ewen, M. E., Faha, B., Harlow, E., and Livingston, D. (1992) Science 255, 85-87; Faha, B., Ewen, M. E., Tsai, L.-H., Livingston, D., and Harlow, E. (1992) Science 255, 87-90). The reconstituted cdc2-cyclin B1 complex incorporated 4-5-fold more phosphate into the p34 subunit of the three-subunit (p70, p34, and p14) human single-stranded DNA-binding protein (also called RP-A), a DNA replication and DNA repair factor, than cdc2-cyclin A. No detectable phosphorylation of the p34 protein was observed with cdk2 complexed with either cyclin B1 or A. These data indicate that both cyclins as well as the catalytic subunits are important factors in controlling the rate of phosphorylation of a given substrate. The cyclin-activated cdc2 family kinases may target their cellular substrates through cyclin-mediated protein-protein interactions.  相似文献   

2.
Phosphorylation of Thr161, a residue conserved in all members of the cdc2 family, has been reported to be absolutely required for the catalytic activity of cdc2, the major regulator of eukaryotic cell cycle. In the present work, we have purified from starfish oocytes a kinase that specifically activates cdc2 in a cyclin-dependent manner through phosphorylation of its Thr161 residue. Our most highly purified preparation contained only two major proteins of apparent M(r) 37 and 40 kDa (p37 and p40), which could not be separated from each other without loss of activity. The purified kinase was found to phosphorylate not only cdc2, but also cdk2 and a divergent cdc2-like protein from Caenorhabditis, in chimeric complexes including both mitotic and G1/S cyclins. Extensive microsequencing of p40 did not reveal any convincing homology with any known protein. In contrast, p37 is the starfish homologue of the M015 gene product, a kinase previously cloned by homology probing from a Xenopus cDNA library. As expected, immunodepletion of the MO15 protein depleted Xenopus egg extracts of CAK (cdk-activating kinase) activity, which was recovered in immunoprecipitates. Taken together, the above results demonstrate that MO15 is a gene conserved throughout evolution (at least from echinoderms to vertebrates) that encodes the catalytic subunit of a protein kinase that activates cdc2-cdks complexes through phosphorylation of Thr161 (or its homologues).  相似文献   

3.
Ribonucleotide reductase is a rate-limiting enzyme in DNA synthesis and is composed of two different proteins, R1 and R2. The R2 protein appears to be rate-limiting for enzyme activity in proliferating cells, and it is phosphorylated by p34cdc2 and CDK2, mediators of cell cycle transition events. A sequence in the R2 protein at serine-20 matches a consensus sequence for p34cdc2 and CDK2 kinases. We tested the hypothesis that the serine-20 residue was the major p34cdc2 kinase site of phosphorylation. Three peptides were synthesized (from Asp-13 to Ala-28) that contained either the wild type amino acid sequence (Asp-Gln-Gln-Gln-Leu-Gln-Leu-Ser-Pro-Leu-Lys-Arg-Leu-Thr-Leu-Ala, serine peptide) or a mutation, in which the serine residue was replaced with an alanine residue (alanine peptide) or a threonine residue (threonine peptide). Only the serine peptide and threonine peptide were phosphorylated by p34cdc2 kinase. In two-dimensional phosphopeptide mapping experiments of serine peptide and Asp-N endoproteinase digested R2 protein, peptide co-migration patterns suggested that the synthetic phosphopeptide containing serine-20 was identical to the major Asp-N digested R2 phosphopeptide. To further test the hypothesis that serine-20 is the primary phosphorylated residue on R2 protein, three recombinant R2 proteins (R2-Thr, R2-Asp and R2-Ala) were generated by site-directed mutagenesis, in which the serine-20 residue was replaced with threonine, aspartic acid or alanine residues. Wild type R2 and threonine-substituted R2 proteins (R2-Thr) were phosphorylated by p34cdc2 kinase, whereas under the same experimental conditions, R2-Asp and R2-Ala phosphorylation was not detected. Furthermore, the phosphorylated amino acid residue in the R2-Thr protein was determined to be phosphothreonine. Therefore, by replacing a serine-20 residue with a threonine, the phosphorylated amino acid in R2 protein was changed to a phosphothreonine. In total, these results firmly establish that a major p34cdc2 phosphorylation site on the ribonucleotide reductase R2 protein occurs near the N-terminal end at serine-20, which is found within the sequence Ser-Pro-Leu-Lys-Arg-Leu. Comparison of ribonucleotide reductase activities between wild type and mutated forms of the R2 proteins suggested that mutation at serine-20 did not significantly affect enzyme activity.  相似文献   

4.
5.
The G2-M transition of the cell cycle is triggered by the p34(cdc2)/cyclin B kinase. During the prophase/metaphase transition, the inactive, Thr-14/Tyr-15 phosphorylated form of p34(cdc2) (TP-YP) is modified to an active, Thr-14/Tyr-15 dephosphorylated form (T-Y) by the cdc25 dual-specificity phosphatase. Using highly synchronized starfish oocytes as a cellular model, we show that dephosphorylation in vivo and in vitro occurs in two steps: Thr-14 dephosphorylation precedes Tyr-15 dephosphorylation. The transient intermediate form (T-YP), which can be obtained in vitro by treatment of TP-YP by protein phosphatase 2A, displays low but significant kinase activity. These results raise the possibility that the intermediate form T-YP may be involved in the autocatalytic amplification of the p34(cdc2)/cyclin B complex through phosphorylation/activation of the cdc25 phosphatase and phosphorylation/inactivation of the wee1 kinase.  相似文献   

6.
In eucaryotes, M-phase promoting factor (MPF) triggers meiosis in germ cells and mitosis in somatic cells. MPF is composed of two proteins of which one is homologous with the protein kinase encoded by gene cdc2 of Schizosaccharomyces pombe (p34cdc2) and the other is a cyclin whose concentration oscillates during the cell cycle. Inactivation of p34cdc2 (MPF) requires cyclin degradation, which occurs during the metaphase-anaphase transition of the M-phase. Cyclin degradation is not only associated with cell cycle progression, but is also required for this event. At the G2/M transition, p34cdc2 protein kinase is activated and catalyzes phosphorylation of numerous key proteins, thus enabling cell changes to occur. p34cdc2 undergoes multiple-site phosphorylation in a cell cycle-dependent manner. At onset of mitosis, the protein phosphatase cdc25 catalyzes dephosphorylation of the p34cdc2 kinase at the threonine 14 and tyrosine 15 sites. This event may be the rate-limiting step controlling onset of mitosis in cells of vertebrates. A second protein kinase, encoded by the proto-oncogene c-mos, acts as a cytostatic factor preventing cyclin degradation and keeping unfertilized eggs from progressing beyond the second meiotic metaphase.  相似文献   

7.
Subcellular localization of type II cAMP-dependent protein kinase is determined by the interactions of the regulatory subunit (RII) with specific RII-anchoring proteins. By using truncated NH2-terminal RII beta fusion proteins expressed in Escherichia coli and the mitotic protein kinase p34cdc2 isolated from HeLa cells or starfish oocytes, we investigated the in vitro phosphorylation of RII beta by these kinases. The putative site for phosphorylation by the mitotic kinases is Thr-69 in the NH2-terminal domain of RII beta. This phosphorylation site matches the consensus sequence X(T/S)PX(K/R) for p34cdc2 recognition and belongs to a well-conserved sequence found in all RII beta sequences known to date. In contrast to phosphorylation by casein kinase II or the cAMP-dependent protein kinase catalytic subunit, phosphorylation of RII beta by mitotic kinases impaired its interaction with a well-known RII-anchoring protein, the neuronal microtubule-associated protein 2. The potential regulatory significance of the phosphorylation of this site on the interaction with microtubule-associated protein 2 and other RII-anchoring proteins and the physiological relevance of this cyclin B/p34cdc2 kinase-catalyzed modification of RII beta (or phosphorylation by other proline-directed protein kinases) are discussed.  相似文献   

8.
We report the cloning and characterization of a cDNA encoding a cdc2-related protein kinase, named PFTAIRE, that is expressed primarily in the postnatal and adult nervous system. We have demonstrated by in situ hybridization and indirect immunofluorescence that several populations of terminally differentiated neurons and some neuroglia expressed PFTAIRE mRNA and protein. In neurons, PFTAIRE protein was localized in the nucleus and cytoplasm of cell bodies. The anatomical, cellular, and ontogenic patterns of PFTAIRE expression in the nervous system differed from those of p34cdc2 and cdk5, which are expressed in brain and several other mitotic tissues. Proteins of approximately 58-60 kDa coprecipitated specifically with PFTAIRE from cytosolic protein preparations of adult mouse brain and transfected cells. These proteins appeared to be the major endogenous substrates associated with this kinase activity. The temporal and spatial expression patterns of PFTAIRE in the postnatal and adult nervous system suggest that PFTAIRE kinase activity may be associated with the postmitotic and differentiated state of cells in the nervous system and that its function may be distinct from those of p34cdc2 and cdk5.  相似文献   

9.
Antigen receptor genes are assembled by site-specific DNA rearrangement. The recombination activator genes RAG-1 and RAG-2 are essential for this process, termed V(D)J rearrangement. The activity and stability of the RAG-2 protein have now been shown to be regulated by phosphorylation. In fibroblasts RAG-2 was phosphorylated predominantly at two serine residues, one of which affected RAG-2 activity in vivo. The threonine at residue 490 was phosphorylated by p34cdc2 kinase in vitro; phosphorylation at this site in vivo was associated with rapid degradation of RAG-2. Instability was transferred to chimeric proteins by a 90-residue portion of RAG-2. Mutation of the p34cdc2 phosphorylation site of the tumor suppressor protein p53 conferred a similar phenotype, suggesting that this association between phosphorylation and degradation is a general mechanism.  相似文献   

10.
A protein kinase that phosphorylates a specific KSP sequence [K(S/T)PXK], which is abundant in high molecular weight neurofilament (NF) proteins, was identified and isolated from rat spinal cord. Characterization of this enzyme activity revealed a close relationship with p34cdc2 kinase with respect to its molecular mass (32.5 kDa by SDS/PAGE) and substrate specificities. It could phosphorylate a synthetic peptide analog of the simian virus 40 large tumor antigen, reportedly a specific substrate for p34cdc2 kinase. Histone (H1) and peptide analogs of the KSP sequence present in the C-terminal end of rat and mouse neurofilament proteins were phosphorylated. This kinase did not phosphorylate alpha-casein and peptide substrates of other known second messenger-dependent or -independent kinases. Dephosphorylated rat NF protein NF-H was strongly phosphorylated by the purified enzyme; NF proteins NF-M and native NF-H, but not NF-L, were slightly phosphorylated. Studies on synthetic peptide analogs of KSP repeats with substitution of specific residues, known to be present in the C-terminal regions of NF-H, revealed a consensus sequence of X(S/T)PXK, characteristic of the p34cdc2 kinase substrate. On Western blots, the enzyme was immunoreactive with antibody against the C-terminal end of cdc2 kinase (mouse) and neuronal cdc2-like kinase from rat but not with an antibody against the conserved PSTAIRE region of the p34cdc2 kinase. The antibody against the C-terminal end of cdc2 kinase could immunoprecipitate (immunodeplete) the purified kinase activity. Since the adult nervous system is composed primarily of postmitotic cells, the present observations indicate a nonmitotic role for this cdc2-like kinase activity. The effective phosphorylation of NF-H by this kinase suggests a function in axonal structure.  相似文献   

11.
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.  相似文献   

12.
By incubating at 30 degrees C in the presence of an energy source, p34(cdc2)/cyclin B was activated in the extract prepared from a temperature-sensitive mutant, tsBN2, which prematurely enters mitosis at 40 degrees C, the nonpermissive temperature (Nishimoto, T. , E. Eilen, and C. Basilico. 1978. Cell. 15:475-483), and wild-type cells of the hamster BHK21 cell line arrested in S phase, without protein synthesis. Such an in vitro activation of p34(cdc2)/cyclin B, however, did not occur in the extract prepared from cells pretreated with protein synthesis inhibitor cycloheximide, although this extract still retained the ability to inhibit p34(cdc2)/cyclin B activation. When tsBN2 cells arrested in S phase were incubated at 40 degrees C in the presence of cycloheximide, Cdc25B, but not Cdc25A and C, among a family of dual-specificity phosphatases, Cdc25, was lost coincidentally with the lack of the activation of p34(cdc2)/cyclin B. Consistently, the immunodepletion of Cdc25B from the extract inhibited the activation of p34(cdc2)/cyclin B. Cdc25B was found to be unstable (half-life < 30 min). Cdc25B, but not Cdc25C, immunoprecipitated from the extract directly activated the p34(cdc2)/cyclin B of cycloheximide-treated cells as well as that of nontreated cells, although Cdc25C immunoprecipitated from the extract of mitotic cells activated the p34(cdc2)/cyclin B within the extract of cycloheximide-treated cells. Our data suggest that Cdc25B made an initial activation of p34(cdc2)/cyclin B, which initiates mitosis through the activation of Cdc25C.  相似文献   

13.
Protoplasts isolated from petunia leaf mesophyll are non-cycling cells mostly with 2C content. Cells regenerating from protoplast culture enter mitosis after 48 h. This experimental model is used to relate p34cdc2 kinase activity to cell cycle phase. Our results show that the histone H1 phosphorylation, and hence p34cdc2 kinase activity, peaks with G2+early M cell cycle phase. However, a trace kinase activity was already present when most cells were entering S phase. To obtain a maximum of cells in G1+S phases, the protoplast culture was treated with the rare amino acid, mimosine. Mimosine blocked plant cells derived from protoplast culture both at G1 and in early and mid S phase. Despite the increased G1+S level, p34cdc2 kinase activity did not increase. This suggests that the trace activity appearing when the majority of cells are entering S does not correspond to any putative p34cdc2 activation at G1/S transition but to the activation of the minor 4C population initially present in the leaf: the hypothesis remains that p34cdc2 kinase activity is solely related to G2+M phase in petunia.  相似文献   

14.
The cdc25A phosphatase removes inhibitory phosphates from threonine-14 and tyrosine-15 of cyclin dependent kinase-2 (cdk2) in vitro, and it is therefore widely assumed that cdc25A positively regulates cyclin E- and A-associated cdk2 activity at the G1 to S phase transition of the mammalian cell division cycle. Human cdc25A was introduced into mouse NIH3T3 fibroblasts co-expressing a form of the colony-stimulating factor-1 (CSF-1) receptor that is partially defective in transducing mitogenic signals. Cdc25A enabled these cells to form colonies in semisolid medium containing serum plus human recombinant CSF-1 in a manner reminiscent of cells rescued by c-myc. However, cdc25A-rescued cells could not proliferate in chemically defined medium containing CSF-1 and continued to require c-myc function for S phase entry. When contact-inhibited cells overexpressing cdc25A were dispersed and stimulated to synchronously enter the cell division cycle, they entered S phase 2-3 h earlier than their parental untransfected counterparts. Shortening of G1 phase temporally correlated with more rapid degradation of the cdk inhibitor p27Kip1 and with premature activation of cyclin A-dependent cdk2. Paradoxically, tyrosine phosphorylation of cdk2 increased considerably as cells entered S phase, and cdc25A overexpression potentiated rather than diminished this effect. At face value, these results are inconsistent with the hypothesis that cdc25A acts directly on cdk2 to activate its S phase promoting function.  相似文献   

15.
DNA polymerase alpha-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase alpha-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase alpha-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase alpha-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase alpha-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.  相似文献   

16.
Previously, it has been shown that Aspergillus cells lacking the function of nimQ and the anaphase-promoting complex (APC) component bimEAPC1 enter mitosis without replicating DNA. Here nimQ is shown to encode an MCM2 homologue. Although mutation of nimQMCM2 inhibits initiation of DNA replication, a few cells do enter mitosis. Cells arrested at G1/S by lack of nimQMCM2 contain p34(cdc2)/cyclin B, but p34(cdc2) remains tyrosine dephosphorylated, even after DNA damage. However, arrest of DNA replication using hydroxyurea followed by inactivation of nimQMCM2 and bimEAPC1 does not abrogate the S phase arrest checkpoint over mitosis. nimQMCM2, likely via initiation of DNA replication, is therefore required to trigger tyrosine phosphorylation of p34(cdc2) during the G1 to S transition, which may occur by inactivation of nimTcdc25. Cells lacking both nimQMCM2 and bimEAPC1 are deficient in the S phase arrest checkpoint over mitosis because they lack both tyrosine phosphorylation of p34(cdc2) and the function of bimEAPC1. Initiation of DNA replication, which requires nimQMCM2, is apparently critical to switch mitotic regulation from the APC to include tyrosine phosphorylation of p34(cdc2) at G1/S. We also show that cells arrested at G1/S due to lack of nimQMCM2 continue to replicate spindle pole bodies in the absence of DNA replication and can undergo anaphase in the absence of APC function.  相似文献   

17.
18.
Cyclin A is a nuclear protein which is part of a kinase complex with either p34cdc2 or p33cdk2. Cyclin A is required in higher eukaryotic cells at the G1/S and the G2/M transitions. To examine the relationship between cyclin A and DNA replication, we simultaneously labeled exponentially growing HeLa cells for the distribution of cyclin A and proliferating cell nuclear antigen (PCNA). We have now demonstrated, by means of immunoelectron microscopy, that cyclin A is located at the sites of DNA replication visualized by both BrdU and PCNA labeling. Thus cyclin A may play a significant role in the phosphorylation of proteins at or near the sites of DNA replication.  相似文献   

19.
We examined the effect of suramin, an anticancer agent and a functional analog of naturally occuring glycosaminoglycans, on p34cdc2 kinase. We find that suramin strongly inhibits the catalytic activity of purified p34cdc2 kinase (IC50 approximately 4 microM), whereas it only weakly inhibits the p13-agarose precipitated kinase activity from nuclear and cytoplasmic extracts of the asynchronous H69 human small cell lung cancer cells. We also find that the tyrosine phosphorylation of p34cdc2 kinase in the nuclear extract is increased about twice when the extracts are preincubated with 50 microM of suramin prior to the p13-agarose precipitation. We propose that this increase might result from the inhibitory effect of suramin towards p34cdc2-specific tyrosine phosphatases. These results suggest both a direct and an indirect effect of suramin on p34cdc2 kinase. We also find that heparin is a potent inhibitor of purified cdc2 kinase (IC50 approximately 3.5 micrograms/ml). Therefore, glycosaminoglycans might be physiological regulators of p34cdc2 kinase in vivo.  相似文献   

20.
We studied the effect of doxorubicin (Dox) on cell cycle progression and its correlation with DNA damage and cytotoxicity in p53-mutant P388 cells. P388 cells synchronized in S and G2/M phases were > 3-fold more sensitive to Dox than were cells in G1 phase (Dox ID50 = 0.50 +/- 0.16 microM in cells synchronized in S phase versus 1.64 +/- 0.12 microM in asynchronized cells; drug exposure, 1 hr). Treatment of synchronized cells in early S phase with 1 microM Dox (2 x ID50) for 1 hr induced a marked cell arrest at G2/M phase at 6-12 hr after drug incubation. We then studied the effect of Dox on the p34cdc2/cyclin B1 complex because it plays a key role in regulating G2/M phase transition. In untreated control P388 cells, p34cdc2 kinase localizes in the nucleus and cytoplasms, particularly in the centrosomes, and p34cdc2 kinase activity is dependent on cell cycle progression, with the enzyme activity increasing steadily from G1/S to G2/M and markedly declining thereafter. Treatment of synchronized P388 cells in early S phase with 1 microM Dox for 1 hr did not affect the pattern of subcellular distribution of the enzyme but completely abrogated its function for > or = 10 hr. In a cell-free system, Dox did not inhibit p34cdc2 kinase activity, indicating that is has no direct effect on the enzyme function. In whole cells, Dox treatment prevented p34cdc2 kinase dephosphorylation without altering its synthesis, and this effect was due to neither down-regulation of cdc25C nor inhibition of protein-tyrosine phosphatase activity. In contrast, Dox treatment was found to induced cyclin B1 accumulation as a result of stimulating its synthesis and inhibiting its degradation. A good correlation was found between extent of DNA double-strand breaks and p34cdc2 kinase activity inhibition. Our results suggest that anthracycline-induced cytotoxicity is cell cycle dependent and is mediated, at least in part, by disturbance of the regulation of p34cdc2/cyclin B1 complex, thus leading to G2/M phase arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号